Commit
·
6dae873
1
Parent(s):
27d596a
upload hubscripts/chemdner_hub.py to hub from bigbio repo
Browse files- chemdner.py +417 -0
chemdner.py
ADDED
@@ -0,0 +1,417 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2022 The HuggingFace Datasets Authors and the current dataset script contributor.
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
import os
|
16 |
+
import re
|
17 |
+
from typing import Dict, Iterator, List, Tuple
|
18 |
+
|
19 |
+
import bioc
|
20 |
+
import datasets
|
21 |
+
from bioc import biocxml
|
22 |
+
|
23 |
+
from .bigbiohub import kb_features
|
24 |
+
from .bigbiohub import BigBioConfig
|
25 |
+
from .bigbiohub import Tasks
|
26 |
+
|
27 |
+
_LANGUAGES = ['English']
|
28 |
+
_PUBMED = True
|
29 |
+
_LOCAL = False
|
30 |
+
_CITATION = """\
|
31 |
+
@article{Krallinger2015,
|
32 |
+
title = {The CHEMDNER corpus of chemicals and drugs and its annotation principles},
|
33 |
+
author = {
|
34 |
+
Krallinger, Martin and Rabal, Obdulia and Leitner, Florian and Vazquez,
|
35 |
+
Miguel and Salgado, David and Lu, Zhiyong and Leaman, Robert and Lu, Yanan
|
36 |
+
and Ji, Donghong and Lowe, Daniel M. and Sayle, Roger A. and
|
37 |
+
Batista-Navarro, Riza Theresa and Rak, Rafal and Huber, Torsten and
|
38 |
+
Rockt{\"a}schel, Tim and Matos, S{\'e}rgio and Campos, David and Tang,
|
39 |
+
Buzhou and Xu, Hua and Munkhdalai, Tsendsuren and Ryu, Keun Ho and Ramanan,
|
40 |
+
S. V. and Nathan, Senthil and {\v{Z}}itnik, Slavko and Bajec, Marko and
|
41 |
+
Weber, Lutz and Irmer, Matthias and Akhondi, Saber A. and Kors, Jan A. and
|
42 |
+
Xu, Shuo and An, Xin and Sikdar, Utpal Kumar and Ekbal, Asif and Yoshioka,
|
43 |
+
Masaharu and Dieb, Thaer M. and Choi, Miji and Verspoor, Karin and Khabsa,
|
44 |
+
Madian and Giles, C. Lee and Liu, Hongfang and Ravikumar, Komandur
|
45 |
+
Elayavilli and Lamurias, Andre and Couto, Francisco M. and Dai, Hong-Jie
|
46 |
+
and Tsai, Richard Tzong-Han and Ata, Caglar and Can, Tolga and Usi{\'e},
|
47 |
+
Anabel and Alves, Rui and Segura-Bedmar, Isabel and Mart{\'i}nez, Paloma
|
48 |
+
and Oyarzabal, Julen and Valencia, Alfonso
|
49 |
+
},
|
50 |
+
year = 2015,
|
51 |
+
month = {Jan},
|
52 |
+
day = 19,
|
53 |
+
journal = {Journal of Cheminformatics},
|
54 |
+
volume = 7,
|
55 |
+
number = 1,
|
56 |
+
pages = {S2},
|
57 |
+
doi = {10.1186/1758-2946-7-S1-S2},
|
58 |
+
issn = {1758-2946},
|
59 |
+
url = {https://doi.org/10.1186/1758-2946-7-S1-S2},
|
60 |
+
abstract = {
|
61 |
+
The automatic extraction of chemical information from text requires the
|
62 |
+
recognition of chemical entity mentions as one of its key steps. When
|
63 |
+
developing supervised named entity recognition (NER) systems, the
|
64 |
+
availability of a large, manually annotated text corpus is desirable.
|
65 |
+
Furthermore, large corpora permit the robust evaluation and comparison of
|
66 |
+
different approaches that detect chemicals in documents. We present the
|
67 |
+
CHEMDNER corpus, a collection of 10,000 PubMed abstracts that contain a
|
68 |
+
total of 84,355 chemical entity mentions labeled manually by expert
|
69 |
+
chemistry literature curators, following annotation guidelines specifically
|
70 |
+
defined for this task. The abstracts of the CHEMDNER corpus were selected
|
71 |
+
to be representative for all major chemical disciplines. Each of the
|
72 |
+
chemical entity mentions was manually labeled according to its
|
73 |
+
structure-associated chemical entity mention (SACEM) class: abbreviation,
|
74 |
+
family, formula, identifier, multiple, systematic and trivial. The
|
75 |
+
difficulty and consistency of tagging chemicals in text was measured using
|
76 |
+
an agreement study between annotators, obtaining a percentage agreement of
|
77 |
+
91. For a subset of the CHEMDNER corpus (the test set of 3,000 abstracts)
|
78 |
+
we provide not only the Gold Standard manual annotations, but also mentions
|
79 |
+
automatically detected by the 26 teams that participated in the BioCreative
|
80 |
+
IV CHEMDNER chemical mention recognition task. In addition, we release the
|
81 |
+
CHEMDNER silver standard corpus of automatically extracted mentions from
|
82 |
+
17,000 randomly selected PubMed abstracts. A version of the CHEMDNER corpus
|
83 |
+
in the BioC format has been generated as well. We propose a standard for
|
84 |
+
required minimum information about entity annotations for the construction
|
85 |
+
of domain specific corpora on chemical and drug entities. The CHEMDNER
|
86 |
+
corpus and annotation guidelines are available at:
|
87 |
+
ttp://www.biocreative.org/resources/biocreative-iv/chemdner-corpus/
|
88 |
+
}
|
89 |
+
}
|
90 |
+
"""
|
91 |
+
|
92 |
+
_DESCRIPTION = """\
|
93 |
+
We present the CHEMDNER corpus, a collection of 10,000 PubMed abstracts that
|
94 |
+
contain a total of 84,355 chemical entity mentions labeled manually by expert
|
95 |
+
chemistry literature curators, following annotation guidelines specifically
|
96 |
+
defined for this task. The abstracts of the CHEMDNER corpus were selected to be
|
97 |
+
representative for all major chemical disciplines. Each of the chemical entity
|
98 |
+
mentions was manually labeled according to its structure-associated chemical
|
99 |
+
entity mention (SACEM) class: abbreviation, family, formula, identifier,
|
100 |
+
multiple, systematic and trivial.
|
101 |
+
"""
|
102 |
+
|
103 |
+
_DATASETNAME = "chemdner"
|
104 |
+
_DISPLAYNAME = "CHEMDNER"
|
105 |
+
|
106 |
+
_HOMEPAGE = "https://biocreative.bioinformatics.udel.edu/resources/biocreative-iv/chemdner-corpus/"
|
107 |
+
|
108 |
+
_LICENSE = 'License information unavailable'
|
109 |
+
|
110 |
+
_URLs = {
|
111 |
+
"source": "https://ftp.ncbi.nlm.nih.gov/pub/lu/BC7-NLM-Chem-track/BC7T2-CHEMDNER-corpus_v2.BioC.xml.gz",
|
112 |
+
"bigbio_kb": "https://ftp.ncbi.nlm.nih.gov/pub/lu/BC7-NLM-Chem-track/BC7T2-CHEMDNER-corpus_v2.BioC.xml.gz",
|
113 |
+
"bigbio_text": "https://ftp.ncbi.nlm.nih.gov/pub/lu/BC7-NLM-Chem-track/BC7T2-CHEMDNER-corpus_v2.BioC.xml.gz",
|
114 |
+
}
|
115 |
+
|
116 |
+
_SUPPORTED_TASKS = [
|
117 |
+
Tasks.NAMED_ENTITY_RECOGNITION,
|
118 |
+
Tasks.TEXT_CLASSIFICATION,
|
119 |
+
]
|
120 |
+
_SOURCE_VERSION = "1.0.0"
|
121 |
+
_BIGBIO_VERSION = "1.0.0"
|
122 |
+
|
123 |
+
|
124 |
+
class CHEMDNERDataset(datasets.GeneratorBasedBuilder):
|
125 |
+
"""CHEMDNER"""
|
126 |
+
|
127 |
+
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION)
|
128 |
+
BIGBIO_VERSION = datasets.Version(_BIGBIO_VERSION)
|
129 |
+
|
130 |
+
BUILDER_CONFIGS = [
|
131 |
+
BigBioConfig(
|
132 |
+
name="chemdner_source",
|
133 |
+
version=SOURCE_VERSION,
|
134 |
+
description="CHEMDNER source schema",
|
135 |
+
schema="source",
|
136 |
+
subset_id="chemdner",
|
137 |
+
),
|
138 |
+
BigBioConfig(
|
139 |
+
name="chemdner_bigbio_kb",
|
140 |
+
version=BIGBIO_VERSION,
|
141 |
+
description="CHEMDNER BigBio schema (KB)",
|
142 |
+
schema="bigbio_kb",
|
143 |
+
subset_id="chemdner",
|
144 |
+
),
|
145 |
+
BigBioConfig(
|
146 |
+
name="chemdner_bigbio_text",
|
147 |
+
version=BIGBIO_VERSION,
|
148 |
+
description="CHEMDNER BigBio schema (TEXT)",
|
149 |
+
schema="bigbio_text",
|
150 |
+
subset_id="chemdner",
|
151 |
+
),
|
152 |
+
]
|
153 |
+
|
154 |
+
DEFAULT_CONFIG_NAME = "chemdner_source"
|
155 |
+
|
156 |
+
def _info(self):
|
157 |
+
|
158 |
+
if self.config.schema == "source":
|
159 |
+
# this is a variation on the BioC format
|
160 |
+
features = datasets.Features(
|
161 |
+
{
|
162 |
+
"passages": [
|
163 |
+
{
|
164 |
+
"document_id": datasets.Value("string"),
|
165 |
+
"type": datasets.Value("string"),
|
166 |
+
"text": datasets.Value("string"),
|
167 |
+
"offset": datasets.Value("int32"),
|
168 |
+
"entities": [
|
169 |
+
{
|
170 |
+
"id": datasets.Value("string"),
|
171 |
+
"offsets": [[datasets.Value("int32")]],
|
172 |
+
"text": [datasets.Value("string")],
|
173 |
+
"type": datasets.Value("string"),
|
174 |
+
"normalized": [
|
175 |
+
{
|
176 |
+
"db_name": datasets.Value("string"),
|
177 |
+
"db_id": datasets.Value("string"),
|
178 |
+
}
|
179 |
+
],
|
180 |
+
}
|
181 |
+
],
|
182 |
+
}
|
183 |
+
]
|
184 |
+
}
|
185 |
+
)
|
186 |
+
|
187 |
+
elif self.config.schema == "bigbio_kb":
|
188 |
+
features = kb_features
|
189 |
+
|
190 |
+
elif self.config.schema == "bigbio_text":
|
191 |
+
features = text_features
|
192 |
+
|
193 |
+
return datasets.DatasetInfo(
|
194 |
+
description=_DESCRIPTION,
|
195 |
+
features=features,
|
196 |
+
supervised_keys=None,
|
197 |
+
homepage=_HOMEPAGE,
|
198 |
+
license=str(_LICENSE),
|
199 |
+
citation=_CITATION,
|
200 |
+
)
|
201 |
+
|
202 |
+
def _split_generators(self, dl_manager):
|
203 |
+
"""Returns SplitGenerators."""
|
204 |
+
|
205 |
+
my_urls = _URLs[self.config.schema]
|
206 |
+
data_dir = dl_manager.download_and_extract(my_urls) + "/"
|
207 |
+
return [
|
208 |
+
datasets.SplitGenerator(
|
209 |
+
name=datasets.Split.TRAIN,
|
210 |
+
# These kwargs will be passed to _generate_examples
|
211 |
+
gen_kwargs={
|
212 |
+
"filepath": os.path.join(
|
213 |
+
data_dir, "BC7T2-CHEMDNER-corpus-training.BioC.xml"
|
214 |
+
),
|
215 |
+
"split": "train",
|
216 |
+
},
|
217 |
+
),
|
218 |
+
datasets.SplitGenerator(
|
219 |
+
name=datasets.Split.TEST,
|
220 |
+
# These kwargs will be passed to _generate_examples
|
221 |
+
gen_kwargs={
|
222 |
+
"filepath": os.path.join(
|
223 |
+
data_dir, "BC7T2-CHEMDNER-corpus-evaluation.BioC.xml"
|
224 |
+
),
|
225 |
+
"split": "test",
|
226 |
+
},
|
227 |
+
),
|
228 |
+
datasets.SplitGenerator(
|
229 |
+
name=datasets.Split.VALIDATION,
|
230 |
+
# These kwargs will be passed to _generate_examples
|
231 |
+
gen_kwargs={
|
232 |
+
"filepath": os.path.join(
|
233 |
+
data_dir, "BC7T2-CHEMDNER-corpus-development.BioC.xml"
|
234 |
+
),
|
235 |
+
"split": "dev",
|
236 |
+
},
|
237 |
+
),
|
238 |
+
]
|
239 |
+
|
240 |
+
def _get_passages_and_entities(
|
241 |
+
self, d: bioc.BioCDocument
|
242 |
+
) -> Tuple[List[Dict], List[List[Dict]]]:
|
243 |
+
|
244 |
+
passages: List[Dict] = []
|
245 |
+
entities: List[List[Dict]] = []
|
246 |
+
|
247 |
+
text_total_length = 0
|
248 |
+
|
249 |
+
po_start = 0
|
250 |
+
|
251 |
+
for i, p in enumerate(d.passages):
|
252 |
+
|
253 |
+
eo = p.offset - text_total_length
|
254 |
+
|
255 |
+
text_total_length += len(p.text) + 1
|
256 |
+
|
257 |
+
po_end = po_start + len(p.text)
|
258 |
+
|
259 |
+
dp = {
|
260 |
+
"text": p.text,
|
261 |
+
"type": p.infons.get("type"),
|
262 |
+
"offsets": [(po_start, po_end)],
|
263 |
+
"offset": p.offset, # original offset
|
264 |
+
}
|
265 |
+
|
266 |
+
po_start = po_end + 1
|
267 |
+
|
268 |
+
passages.append(dp)
|
269 |
+
|
270 |
+
pe = []
|
271 |
+
|
272 |
+
for a in p.annotations:
|
273 |
+
|
274 |
+
a_type = a.infons.get("type")
|
275 |
+
|
276 |
+
if (
|
277 |
+
self.config.schema == "bigbio_kb"
|
278 |
+
and a_type == "MeSH_Indexing_Chemical"
|
279 |
+
):
|
280 |
+
continue
|
281 |
+
|
282 |
+
if (
|
283 |
+
a.text == None or a.text == ""
|
284 |
+
) and self.config.schema == "bigbio_kb":
|
285 |
+
continue
|
286 |
+
|
287 |
+
offsets, text = get_texts_and_offsets_from_bioc_ann(a)
|
288 |
+
|
289 |
+
da = {
|
290 |
+
"type": a_type,
|
291 |
+
"offsets": [(start - eo, end - eo) for (start, end) in offsets],
|
292 |
+
"text": text,
|
293 |
+
"id": a.id,
|
294 |
+
"normalized": self._get_normalized(a),
|
295 |
+
}
|
296 |
+
|
297 |
+
pe.append(da)
|
298 |
+
|
299 |
+
entities.append(pe)
|
300 |
+
|
301 |
+
return passages, entities
|
302 |
+
|
303 |
+
def _get_normalized(self, a: bioc.BioCAnnotation) -> List[Dict]:
|
304 |
+
"""
|
305 |
+
Get normalization DB and ID from annotation identifiers
|
306 |
+
"""
|
307 |
+
|
308 |
+
identifiers = a.infons.get("identifier")
|
309 |
+
|
310 |
+
if identifiers is not None:
|
311 |
+
|
312 |
+
identifiers = re.split(r",|;", identifiers)
|
313 |
+
|
314 |
+
identifiers = [i for i in identifiers if i != "-"]
|
315 |
+
|
316 |
+
normalized = [i.split(":") for i in identifiers]
|
317 |
+
|
318 |
+
normalized = [
|
319 |
+
{"db_name": elems[0], "db_id": elems[1]} for elems in normalized
|
320 |
+
]
|
321 |
+
|
322 |
+
else:
|
323 |
+
|
324 |
+
# No normalization
|
325 |
+
normalized = []
|
326 |
+
|
327 |
+
return normalized
|
328 |
+
|
329 |
+
def _get_textcls_example(self, d: bioc.BioCDocument) -> Dict:
|
330 |
+
|
331 |
+
example = {"document_id": d.id, "text": [], "labels": []}
|
332 |
+
|
333 |
+
for p in d.passages:
|
334 |
+
|
335 |
+
example["text"].append(p.text)
|
336 |
+
|
337 |
+
for a in p.annotations:
|
338 |
+
|
339 |
+
if a.infons.get("type") == "MeSH_Indexing_Chemical":
|
340 |
+
|
341 |
+
example["labels"].append(a.infons.get("identifier"))
|
342 |
+
|
343 |
+
example["text"] = " ".join(example["text"])
|
344 |
+
|
345 |
+
return example
|
346 |
+
|
347 |
+
def _generate_examples(
|
348 |
+
self,
|
349 |
+
filepath: str,
|
350 |
+
split: str,
|
351 |
+
) -> Iterator[Tuple[int, Dict]]:
|
352 |
+
"""Yields examples as (key, example) tuples."""
|
353 |
+
|
354 |
+
reader = biocxml.BioCXMLDocumentReader(str(filepath))
|
355 |
+
|
356 |
+
if self.config.schema == "source":
|
357 |
+
|
358 |
+
for uid, doc in enumerate(reader):
|
359 |
+
|
360 |
+
passages, passages_entities = self._get_passages_and_entities(doc)
|
361 |
+
|
362 |
+
for p, pe in zip(passages, passages_entities):
|
363 |
+
|
364 |
+
p.pop("offsets") # BioC has only start for passages offsets
|
365 |
+
|
366 |
+
p["document_id"] = doc.id
|
367 |
+
p["entities"] = pe # BioC has per passage entities
|
368 |
+
|
369 |
+
yield uid, {"passages": passages}
|
370 |
+
|
371 |
+
elif self.config.schema == "bigbio_kb":
|
372 |
+
|
373 |
+
uid = 0
|
374 |
+
|
375 |
+
for idx, doc in enumerate(reader):
|
376 |
+
|
377 |
+
passages, passages_entities = self._get_passages_and_entities(doc)
|
378 |
+
|
379 |
+
# global id
|
380 |
+
uid += 1
|
381 |
+
|
382 |
+
# unpack per-passage entities
|
383 |
+
entities = [e for pe in passages_entities for e in pe]
|
384 |
+
|
385 |
+
for p in passages:
|
386 |
+
p.pop("offset") # drop original offset
|
387 |
+
p["text"] = (p["text"],) # text in passage is Sequence
|
388 |
+
p["id"] = uid # override BioC default id
|
389 |
+
uid += 1
|
390 |
+
|
391 |
+
for e in entities:
|
392 |
+
e["id"] = uid # override BioC default id
|
393 |
+
uid += 1
|
394 |
+
|
395 |
+
yield idx, {
|
396 |
+
"id": uid,
|
397 |
+
"document_id": doc.id,
|
398 |
+
"passages": passages,
|
399 |
+
"entities": entities,
|
400 |
+
"events": [],
|
401 |
+
"coreferences": [],
|
402 |
+
"relations": [],
|
403 |
+
}
|
404 |
+
|
405 |
+
elif self.config.schema == "bigbio_text":
|
406 |
+
|
407 |
+
uid = 0
|
408 |
+
|
409 |
+
for idx, doc in enumerate(reader):
|
410 |
+
|
411 |
+
example = self._get_textcls_example(doc)
|
412 |
+
example["id"] = uid
|
413 |
+
|
414 |
+
# global id
|
415 |
+
uid += 1
|
416 |
+
|
417 |
+
yield idx, example
|