parquet-converter
commited on
Commit
·
b118e8d
1
Parent(s):
970237b
Update parquet files
Browse files- README.md +0 -50
- bigbiohub.py +0 -592
- cpi.py +0 -295
- cpi_bigbio_kb/cpi-train.parquet +3 -0
- cpi_iv_source/cpi-train.parquet +3 -0
- cpi_niv_source/cpi-train.parquet +3 -0
- cpi_source/cpi-train.parquet +3 -0
README.md
DELETED
@@ -1,50 +0,0 @@
|
|
1 |
-
|
2 |
-
---
|
3 |
-
language:
|
4 |
-
- en
|
5 |
-
bigbio_language:
|
6 |
-
- English
|
7 |
-
license: other
|
8 |
-
multilinguality: monolingual
|
9 |
-
bigbio_license_shortname: ISC
|
10 |
-
pretty_name: CPI
|
11 |
-
homepage: https://github.com/KerstenDoering/CPI-Pipeline
|
12 |
-
bigbio_pubmed: True
|
13 |
-
bigbio_public: True
|
14 |
-
bigbio_tasks:
|
15 |
-
- NAMED_ENTITY_RECOGNITION
|
16 |
-
- NAMED_ENTITY_DISAMBIGUATION
|
17 |
-
- RELATION_EXTRACTION
|
18 |
-
---
|
19 |
-
|
20 |
-
|
21 |
-
# Dataset Card for CPI
|
22 |
-
|
23 |
-
## Dataset Description
|
24 |
-
|
25 |
-
- **Homepage:** https://github.com/KerstenDoering/CPI-Pipeline
|
26 |
-
- **Pubmed:** True
|
27 |
-
- **Public:** True
|
28 |
-
- **Tasks:** NER,NED,RE
|
29 |
-
|
30 |
-
|
31 |
-
The compound-protein relationship (CPI) dataset consists of 2,613 sentences
|
32 |
-
from abstracts containing annotations of proteins, small molecules, and their
|
33 |
-
relationships.
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
## Citation Information
|
38 |
-
|
39 |
-
```
|
40 |
-
@article{doring2020automated,
|
41 |
-
title={Automated recognition of functional compound-protein relationships in literature},
|
42 |
-
author={D{\"o}ring, Kersten and Qaseem, Ammar and Becer, Michael and Li, Jianyu and Mishra, Pankaj and Gao, Mingjie and Kirchner, Pascal and Sauter, Florian and Telukunta, Kiran K and Moumbock, Aur{\'e}lien FA and others},
|
43 |
-
journal={Plos one},
|
44 |
-
volume={15},
|
45 |
-
number={3},
|
46 |
-
pages={e0220925},
|
47 |
-
year={2020},
|
48 |
-
publisher={Public Library of Science San Francisco, CA USA}
|
49 |
-
}
|
50 |
-
```
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
bigbiohub.py
DELETED
@@ -1,592 +0,0 @@
|
|
1 |
-
from collections import defaultdict
|
2 |
-
from dataclasses import dataclass
|
3 |
-
from enum import Enum
|
4 |
-
import logging
|
5 |
-
from pathlib import Path
|
6 |
-
from types import SimpleNamespace
|
7 |
-
from typing import TYPE_CHECKING, Dict, Iterable, List, Tuple
|
8 |
-
|
9 |
-
import datasets
|
10 |
-
|
11 |
-
if TYPE_CHECKING:
|
12 |
-
import bioc
|
13 |
-
|
14 |
-
logger = logging.getLogger(__name__)
|
15 |
-
|
16 |
-
|
17 |
-
BigBioValues = SimpleNamespace(NULL="<BB_NULL_STR>")
|
18 |
-
|
19 |
-
|
20 |
-
@dataclass
|
21 |
-
class BigBioConfig(datasets.BuilderConfig):
|
22 |
-
"""BuilderConfig for BigBio."""
|
23 |
-
|
24 |
-
name: str = None
|
25 |
-
version: datasets.Version = None
|
26 |
-
description: str = None
|
27 |
-
schema: str = None
|
28 |
-
subset_id: str = None
|
29 |
-
|
30 |
-
|
31 |
-
class Tasks(Enum):
|
32 |
-
NAMED_ENTITY_RECOGNITION = "NER"
|
33 |
-
NAMED_ENTITY_DISAMBIGUATION = "NED"
|
34 |
-
EVENT_EXTRACTION = "EE"
|
35 |
-
RELATION_EXTRACTION = "RE"
|
36 |
-
COREFERENCE_RESOLUTION = "COREF"
|
37 |
-
QUESTION_ANSWERING = "QA"
|
38 |
-
TEXTUAL_ENTAILMENT = "TE"
|
39 |
-
SEMANTIC_SIMILARITY = "STS"
|
40 |
-
TEXT_PAIRS_CLASSIFICATION = "TXT2CLASS"
|
41 |
-
PARAPHRASING = "PARA"
|
42 |
-
TRANSLATION = "TRANSL"
|
43 |
-
SUMMARIZATION = "SUM"
|
44 |
-
TEXT_CLASSIFICATION = "TXTCLASS"
|
45 |
-
|
46 |
-
|
47 |
-
entailment_features = datasets.Features(
|
48 |
-
{
|
49 |
-
"id": datasets.Value("string"),
|
50 |
-
"premise": datasets.Value("string"),
|
51 |
-
"hypothesis": datasets.Value("string"),
|
52 |
-
"label": datasets.Value("string"),
|
53 |
-
}
|
54 |
-
)
|
55 |
-
|
56 |
-
pairs_features = datasets.Features(
|
57 |
-
{
|
58 |
-
"id": datasets.Value("string"),
|
59 |
-
"document_id": datasets.Value("string"),
|
60 |
-
"text_1": datasets.Value("string"),
|
61 |
-
"text_2": datasets.Value("string"),
|
62 |
-
"label": datasets.Value("string"),
|
63 |
-
}
|
64 |
-
)
|
65 |
-
|
66 |
-
qa_features = datasets.Features(
|
67 |
-
{
|
68 |
-
"id": datasets.Value("string"),
|
69 |
-
"question_id": datasets.Value("string"),
|
70 |
-
"document_id": datasets.Value("string"),
|
71 |
-
"question": datasets.Value("string"),
|
72 |
-
"type": datasets.Value("string"),
|
73 |
-
"choices": [datasets.Value("string")],
|
74 |
-
"context": datasets.Value("string"),
|
75 |
-
"answer": datasets.Sequence(datasets.Value("string")),
|
76 |
-
}
|
77 |
-
)
|
78 |
-
|
79 |
-
text_features = datasets.Features(
|
80 |
-
{
|
81 |
-
"id": datasets.Value("string"),
|
82 |
-
"document_id": datasets.Value("string"),
|
83 |
-
"text": datasets.Value("string"),
|
84 |
-
"labels": [datasets.Value("string")],
|
85 |
-
}
|
86 |
-
)
|
87 |
-
|
88 |
-
text2text_features = datasets.Features(
|
89 |
-
{
|
90 |
-
"id": datasets.Value("string"),
|
91 |
-
"document_id": datasets.Value("string"),
|
92 |
-
"text_1": datasets.Value("string"),
|
93 |
-
"text_2": datasets.Value("string"),
|
94 |
-
"text_1_name": datasets.Value("string"),
|
95 |
-
"text_2_name": datasets.Value("string"),
|
96 |
-
}
|
97 |
-
)
|
98 |
-
|
99 |
-
kb_features = datasets.Features(
|
100 |
-
{
|
101 |
-
"id": datasets.Value("string"),
|
102 |
-
"document_id": datasets.Value("string"),
|
103 |
-
"passages": [
|
104 |
-
{
|
105 |
-
"id": datasets.Value("string"),
|
106 |
-
"type": datasets.Value("string"),
|
107 |
-
"text": datasets.Sequence(datasets.Value("string")),
|
108 |
-
"offsets": datasets.Sequence([datasets.Value("int32")]),
|
109 |
-
}
|
110 |
-
],
|
111 |
-
"entities": [
|
112 |
-
{
|
113 |
-
"id": datasets.Value("string"),
|
114 |
-
"type": datasets.Value("string"),
|
115 |
-
"text": datasets.Sequence(datasets.Value("string")),
|
116 |
-
"offsets": datasets.Sequence([datasets.Value("int32")]),
|
117 |
-
"normalized": [
|
118 |
-
{
|
119 |
-
"db_name": datasets.Value("string"),
|
120 |
-
"db_id": datasets.Value("string"),
|
121 |
-
}
|
122 |
-
],
|
123 |
-
}
|
124 |
-
],
|
125 |
-
"events": [
|
126 |
-
{
|
127 |
-
"id": datasets.Value("string"),
|
128 |
-
"type": datasets.Value("string"),
|
129 |
-
# refers to the text_bound_annotation of the trigger
|
130 |
-
"trigger": {
|
131 |
-
"text": datasets.Sequence(datasets.Value("string")),
|
132 |
-
"offsets": datasets.Sequence([datasets.Value("int32")]),
|
133 |
-
},
|
134 |
-
"arguments": [
|
135 |
-
{
|
136 |
-
"role": datasets.Value("string"),
|
137 |
-
"ref_id": datasets.Value("string"),
|
138 |
-
}
|
139 |
-
],
|
140 |
-
}
|
141 |
-
],
|
142 |
-
"coreferences": [
|
143 |
-
{
|
144 |
-
"id": datasets.Value("string"),
|
145 |
-
"entity_ids": datasets.Sequence(datasets.Value("string")),
|
146 |
-
}
|
147 |
-
],
|
148 |
-
"relations": [
|
149 |
-
{
|
150 |
-
"id": datasets.Value("string"),
|
151 |
-
"type": datasets.Value("string"),
|
152 |
-
"arg1_id": datasets.Value("string"),
|
153 |
-
"arg2_id": datasets.Value("string"),
|
154 |
-
"normalized": [
|
155 |
-
{
|
156 |
-
"db_name": datasets.Value("string"),
|
157 |
-
"db_id": datasets.Value("string"),
|
158 |
-
}
|
159 |
-
],
|
160 |
-
}
|
161 |
-
],
|
162 |
-
}
|
163 |
-
)
|
164 |
-
|
165 |
-
|
166 |
-
TASK_TO_SCHEMA = {
|
167 |
-
Tasks.NAMED_ENTITY_RECOGNITION.name: "KB",
|
168 |
-
Tasks.NAMED_ENTITY_DISAMBIGUATION.name: "KB",
|
169 |
-
Tasks.EVENT_EXTRACTION.name: "KB",
|
170 |
-
Tasks.RELATION_EXTRACTION.name: "KB",
|
171 |
-
Tasks.COREFERENCE_RESOLUTION.name: "KB",
|
172 |
-
Tasks.QUESTION_ANSWERING.name: "QA",
|
173 |
-
Tasks.TEXTUAL_ENTAILMENT.name: "TE",
|
174 |
-
Tasks.SEMANTIC_SIMILARITY.name: "PAIRS",
|
175 |
-
Tasks.TEXT_PAIRS_CLASSIFICATION.name: "PAIRS",
|
176 |
-
Tasks.PARAPHRASING.name: "T2T",
|
177 |
-
Tasks.TRANSLATION.name: "T2T",
|
178 |
-
Tasks.SUMMARIZATION.name: "T2T",
|
179 |
-
Tasks.TEXT_CLASSIFICATION.name: "TEXT",
|
180 |
-
}
|
181 |
-
|
182 |
-
SCHEMA_TO_TASKS = defaultdict(set)
|
183 |
-
for task, schema in TASK_TO_SCHEMA.items():
|
184 |
-
SCHEMA_TO_TASKS[schema].add(task)
|
185 |
-
SCHEMA_TO_TASKS = dict(SCHEMA_TO_TASKS)
|
186 |
-
|
187 |
-
VALID_TASKS = set(TASK_TO_SCHEMA.keys())
|
188 |
-
VALID_SCHEMAS = set(TASK_TO_SCHEMA.values())
|
189 |
-
|
190 |
-
SCHEMA_TO_FEATURES = {
|
191 |
-
"KB": kb_features,
|
192 |
-
"QA": qa_features,
|
193 |
-
"TE": entailment_features,
|
194 |
-
"T2T": text2text_features,
|
195 |
-
"TEXT": text_features,
|
196 |
-
"PAIRS": pairs_features,
|
197 |
-
}
|
198 |
-
|
199 |
-
|
200 |
-
def get_texts_and_offsets_from_bioc_ann(ann: "bioc.BioCAnnotation") -> Tuple:
|
201 |
-
|
202 |
-
offsets = [(loc.offset, loc.offset + loc.length) for loc in ann.locations]
|
203 |
-
|
204 |
-
text = ann.text
|
205 |
-
|
206 |
-
if len(offsets) > 1:
|
207 |
-
i = 0
|
208 |
-
texts = []
|
209 |
-
for start, end in offsets:
|
210 |
-
chunk_len = end - start
|
211 |
-
texts.append(text[i : chunk_len + i])
|
212 |
-
i += chunk_len
|
213 |
-
while i < len(text) and text[i] == " ":
|
214 |
-
i += 1
|
215 |
-
else:
|
216 |
-
texts = [text]
|
217 |
-
|
218 |
-
return offsets, texts
|
219 |
-
|
220 |
-
|
221 |
-
def remove_prefix(a: str, prefix: str) -> str:
|
222 |
-
if a.startswith(prefix):
|
223 |
-
a = a[len(prefix) :]
|
224 |
-
return a
|
225 |
-
|
226 |
-
|
227 |
-
def parse_brat_file(
|
228 |
-
txt_file: Path,
|
229 |
-
annotation_file_suffixes: List[str] = None,
|
230 |
-
parse_notes: bool = False,
|
231 |
-
) -> Dict:
|
232 |
-
"""
|
233 |
-
Parse a brat file into the schema defined below.
|
234 |
-
`txt_file` should be the path to the brat '.txt' file you want to parse, e.g. 'data/1234.txt'
|
235 |
-
Assumes that the annotations are contained in one or more of the corresponding '.a1', '.a2' or '.ann' files,
|
236 |
-
e.g. 'data/1234.ann' or 'data/1234.a1' and 'data/1234.a2'.
|
237 |
-
Will include annotator notes, when `parse_notes == True`.
|
238 |
-
brat_features = datasets.Features(
|
239 |
-
{
|
240 |
-
"id": datasets.Value("string"),
|
241 |
-
"document_id": datasets.Value("string"),
|
242 |
-
"text": datasets.Value("string"),
|
243 |
-
"text_bound_annotations": [ # T line in brat, e.g. type or event trigger
|
244 |
-
{
|
245 |
-
"offsets": datasets.Sequence([datasets.Value("int32")]),
|
246 |
-
"text": datasets.Sequence(datasets.Value("string")),
|
247 |
-
"type": datasets.Value("string"),
|
248 |
-
"id": datasets.Value("string"),
|
249 |
-
}
|
250 |
-
],
|
251 |
-
"events": [ # E line in brat
|
252 |
-
{
|
253 |
-
"trigger": datasets.Value(
|
254 |
-
"string"
|
255 |
-
), # refers to the text_bound_annotation of the trigger,
|
256 |
-
"id": datasets.Value("string"),
|
257 |
-
"type": datasets.Value("string"),
|
258 |
-
"arguments": datasets.Sequence(
|
259 |
-
{
|
260 |
-
"role": datasets.Value("string"),
|
261 |
-
"ref_id": datasets.Value("string"),
|
262 |
-
}
|
263 |
-
),
|
264 |
-
}
|
265 |
-
],
|
266 |
-
"relations": [ # R line in brat
|
267 |
-
{
|
268 |
-
"id": datasets.Value("string"),
|
269 |
-
"head": {
|
270 |
-
"ref_id": datasets.Value("string"),
|
271 |
-
"role": datasets.Value("string"),
|
272 |
-
},
|
273 |
-
"tail": {
|
274 |
-
"ref_id": datasets.Value("string"),
|
275 |
-
"role": datasets.Value("string"),
|
276 |
-
},
|
277 |
-
"type": datasets.Value("string"),
|
278 |
-
}
|
279 |
-
],
|
280 |
-
"equivalences": [ # Equiv line in brat
|
281 |
-
{
|
282 |
-
"id": datasets.Value("string"),
|
283 |
-
"ref_ids": datasets.Sequence(datasets.Value("string")),
|
284 |
-
}
|
285 |
-
],
|
286 |
-
"attributes": [ # M or A lines in brat
|
287 |
-
{
|
288 |
-
"id": datasets.Value("string"),
|
289 |
-
"type": datasets.Value("string"),
|
290 |
-
"ref_id": datasets.Value("string"),
|
291 |
-
"value": datasets.Value("string"),
|
292 |
-
}
|
293 |
-
],
|
294 |
-
"normalizations": [ # N lines in brat
|
295 |
-
{
|
296 |
-
"id": datasets.Value("string"),
|
297 |
-
"type": datasets.Value("string"),
|
298 |
-
"ref_id": datasets.Value("string"),
|
299 |
-
"resource_name": datasets.Value(
|
300 |
-
"string"
|
301 |
-
), # Name of the resource, e.g. "Wikipedia"
|
302 |
-
"cuid": datasets.Value(
|
303 |
-
"string"
|
304 |
-
), # ID in the resource, e.g. 534366
|
305 |
-
"text": datasets.Value(
|
306 |
-
"string"
|
307 |
-
), # Human readable description/name of the entity, e.g. "Barack Obama"
|
308 |
-
}
|
309 |
-
],
|
310 |
-
### OPTIONAL: Only included when `parse_notes == True`
|
311 |
-
"notes": [ # # lines in brat
|
312 |
-
{
|
313 |
-
"id": datasets.Value("string"),
|
314 |
-
"type": datasets.Value("string"),
|
315 |
-
"ref_id": datasets.Value("string"),
|
316 |
-
"text": datasets.Value("string"),
|
317 |
-
}
|
318 |
-
],
|
319 |
-
},
|
320 |
-
)
|
321 |
-
"""
|
322 |
-
|
323 |
-
example = {}
|
324 |
-
example["document_id"] = txt_file.with_suffix("").name
|
325 |
-
with txt_file.open() as f:
|
326 |
-
example["text"] = f.read()
|
327 |
-
|
328 |
-
# If no specific suffixes of the to-be-read annotation files are given - take standard suffixes
|
329 |
-
# for event extraction
|
330 |
-
if annotation_file_suffixes is None:
|
331 |
-
annotation_file_suffixes = [".a1", ".a2", ".ann"]
|
332 |
-
|
333 |
-
if len(annotation_file_suffixes) == 0:
|
334 |
-
raise AssertionError(
|
335 |
-
"At least one suffix for the to-be-read annotation files should be given!"
|
336 |
-
)
|
337 |
-
|
338 |
-
ann_lines = []
|
339 |
-
for suffix in annotation_file_suffixes:
|
340 |
-
annotation_file = txt_file.with_suffix(suffix)
|
341 |
-
try:
|
342 |
-
with annotation_file.open() as f:
|
343 |
-
ann_lines.extend(f.readlines())
|
344 |
-
except Exception:
|
345 |
-
continue
|
346 |
-
|
347 |
-
example["text_bound_annotations"] = []
|
348 |
-
example["events"] = []
|
349 |
-
example["relations"] = []
|
350 |
-
example["equivalences"] = []
|
351 |
-
example["attributes"] = []
|
352 |
-
example["normalizations"] = []
|
353 |
-
|
354 |
-
if parse_notes:
|
355 |
-
example["notes"] = []
|
356 |
-
|
357 |
-
for line in ann_lines:
|
358 |
-
line = line.strip()
|
359 |
-
if not line:
|
360 |
-
continue
|
361 |
-
|
362 |
-
if line.startswith("T"): # Text bound
|
363 |
-
ann = {}
|
364 |
-
fields = line.split("\t")
|
365 |
-
|
366 |
-
ann["id"] = fields[0]
|
367 |
-
ann["type"] = fields[1].split()[0]
|
368 |
-
ann["offsets"] = []
|
369 |
-
span_str = remove_prefix(fields[1], (ann["type"] + " "))
|
370 |
-
text = fields[2]
|
371 |
-
for span in span_str.split(";"):
|
372 |
-
start, end = span.split()
|
373 |
-
ann["offsets"].append([int(start), int(end)])
|
374 |
-
|
375 |
-
# Heuristically split text of discontiguous entities into chunks
|
376 |
-
ann["text"] = []
|
377 |
-
if len(ann["offsets"]) > 1:
|
378 |
-
i = 0
|
379 |
-
for start, end in ann["offsets"]:
|
380 |
-
chunk_len = end - start
|
381 |
-
ann["text"].append(text[i : chunk_len + i])
|
382 |
-
i += chunk_len
|
383 |
-
while i < len(text) and text[i] == " ":
|
384 |
-
i += 1
|
385 |
-
else:
|
386 |
-
ann["text"] = [text]
|
387 |
-
|
388 |
-
example["text_bound_annotations"].append(ann)
|
389 |
-
|
390 |
-
elif line.startswith("E"):
|
391 |
-
ann = {}
|
392 |
-
fields = line.split("\t")
|
393 |
-
|
394 |
-
ann["id"] = fields[0]
|
395 |
-
|
396 |
-
ann["type"], ann["trigger"] = fields[1].split()[0].split(":")
|
397 |
-
|
398 |
-
ann["arguments"] = []
|
399 |
-
for role_ref_id in fields[1].split()[1:]:
|
400 |
-
argument = {
|
401 |
-
"role": (role_ref_id.split(":"))[0],
|
402 |
-
"ref_id": (role_ref_id.split(":"))[1],
|
403 |
-
}
|
404 |
-
ann["arguments"].append(argument)
|
405 |
-
|
406 |
-
example["events"].append(ann)
|
407 |
-
|
408 |
-
elif line.startswith("R"):
|
409 |
-
ann = {}
|
410 |
-
fields = line.split("\t")
|
411 |
-
|
412 |
-
ann["id"] = fields[0]
|
413 |
-
ann["type"] = fields[1].split()[0]
|
414 |
-
|
415 |
-
ann["head"] = {
|
416 |
-
"role": fields[1].split()[1].split(":")[0],
|
417 |
-
"ref_id": fields[1].split()[1].split(":")[1],
|
418 |
-
}
|
419 |
-
ann["tail"] = {
|
420 |
-
"role": fields[1].split()[2].split(":")[0],
|
421 |
-
"ref_id": fields[1].split()[2].split(":")[1],
|
422 |
-
}
|
423 |
-
|
424 |
-
example["relations"].append(ann)
|
425 |
-
|
426 |
-
# '*' seems to be the legacy way to mark equivalences,
|
427 |
-
# but I couldn't find any info on the current way
|
428 |
-
# this might have to be adapted dependent on the brat version
|
429 |
-
# of the annotation
|
430 |
-
elif line.startswith("*"):
|
431 |
-
ann = {}
|
432 |
-
fields = line.split("\t")
|
433 |
-
|
434 |
-
ann["id"] = fields[0]
|
435 |
-
ann["ref_ids"] = fields[1].split()[1:]
|
436 |
-
|
437 |
-
example["equivalences"].append(ann)
|
438 |
-
|
439 |
-
elif line.startswith("A") or line.startswith("M"):
|
440 |
-
ann = {}
|
441 |
-
fields = line.split("\t")
|
442 |
-
|
443 |
-
ann["id"] = fields[0]
|
444 |
-
|
445 |
-
info = fields[1].split()
|
446 |
-
ann["type"] = info[0]
|
447 |
-
ann["ref_id"] = info[1]
|
448 |
-
|
449 |
-
if len(info) > 2:
|
450 |
-
ann["value"] = info[2]
|
451 |
-
else:
|
452 |
-
ann["value"] = ""
|
453 |
-
|
454 |
-
example["attributes"].append(ann)
|
455 |
-
|
456 |
-
elif line.startswith("N"):
|
457 |
-
ann = {}
|
458 |
-
fields = line.split("\t")
|
459 |
-
|
460 |
-
ann["id"] = fields[0]
|
461 |
-
ann["text"] = fields[2]
|
462 |
-
|
463 |
-
info = fields[1].split()
|
464 |
-
|
465 |
-
ann["type"] = info[0]
|
466 |
-
ann["ref_id"] = info[1]
|
467 |
-
ann["resource_name"] = info[2].split(":")[0]
|
468 |
-
ann["cuid"] = info[2].split(":")[1]
|
469 |
-
example["normalizations"].append(ann)
|
470 |
-
|
471 |
-
elif parse_notes and line.startswith("#"):
|
472 |
-
ann = {}
|
473 |
-
fields = line.split("\t")
|
474 |
-
|
475 |
-
ann["id"] = fields[0]
|
476 |
-
ann["text"] = fields[2] if len(fields) == 3 else BigBioValues.NULL
|
477 |
-
|
478 |
-
info = fields[1].split()
|
479 |
-
|
480 |
-
ann["type"] = info[0]
|
481 |
-
ann["ref_id"] = info[1]
|
482 |
-
example["notes"].append(ann)
|
483 |
-
|
484 |
-
return example
|
485 |
-
|
486 |
-
|
487 |
-
def brat_parse_to_bigbio_kb(brat_parse: Dict) -> Dict:
|
488 |
-
"""
|
489 |
-
Transform a brat parse (conforming to the standard brat schema) obtained with
|
490 |
-
`parse_brat_file` into a dictionary conforming to the `bigbio-kb` schema (as defined in ../schemas/kb.py)
|
491 |
-
:param brat_parse:
|
492 |
-
"""
|
493 |
-
|
494 |
-
unified_example = {}
|
495 |
-
|
496 |
-
# Prefix all ids with document id to ensure global uniqueness,
|
497 |
-
# because brat ids are only unique within their document
|
498 |
-
id_prefix = brat_parse["document_id"] + "_"
|
499 |
-
|
500 |
-
# identical
|
501 |
-
unified_example["document_id"] = brat_parse["document_id"]
|
502 |
-
unified_example["passages"] = [
|
503 |
-
{
|
504 |
-
"id": id_prefix + "_text",
|
505 |
-
"type": "abstract",
|
506 |
-
"text": [brat_parse["text"]],
|
507 |
-
"offsets": [[0, len(brat_parse["text"])]],
|
508 |
-
}
|
509 |
-
]
|
510 |
-
|
511 |
-
# get normalizations
|
512 |
-
ref_id_to_normalizations = defaultdict(list)
|
513 |
-
for normalization in brat_parse["normalizations"]:
|
514 |
-
ref_id_to_normalizations[normalization["ref_id"]].append(
|
515 |
-
{
|
516 |
-
"db_name": normalization["resource_name"],
|
517 |
-
"db_id": normalization["cuid"],
|
518 |
-
}
|
519 |
-
)
|
520 |
-
|
521 |
-
# separate entities and event triggers
|
522 |
-
unified_example["events"] = []
|
523 |
-
non_event_ann = brat_parse["text_bound_annotations"].copy()
|
524 |
-
for event in brat_parse["events"]:
|
525 |
-
event = event.copy()
|
526 |
-
event["id"] = id_prefix + event["id"]
|
527 |
-
trigger = next(
|
528 |
-
tr
|
529 |
-
for tr in brat_parse["text_bound_annotations"]
|
530 |
-
if tr["id"] == event["trigger"]
|
531 |
-
)
|
532 |
-
if trigger in non_event_ann:
|
533 |
-
non_event_ann.remove(trigger)
|
534 |
-
event["trigger"] = {
|
535 |
-
"text": trigger["text"].copy(),
|
536 |
-
"offsets": trigger["offsets"].copy(),
|
537 |
-
}
|
538 |
-
for argument in event["arguments"]:
|
539 |
-
argument["ref_id"] = id_prefix + argument["ref_id"]
|
540 |
-
|
541 |
-
unified_example["events"].append(event)
|
542 |
-
|
543 |
-
unified_example["entities"] = []
|
544 |
-
anno_ids = [ref_id["id"] for ref_id in non_event_ann]
|
545 |
-
for ann in non_event_ann:
|
546 |
-
entity_ann = ann.copy()
|
547 |
-
entity_ann["id"] = id_prefix + entity_ann["id"]
|
548 |
-
entity_ann["normalized"] = ref_id_to_normalizations[ann["id"]]
|
549 |
-
unified_example["entities"].append(entity_ann)
|
550 |
-
|
551 |
-
# massage relations
|
552 |
-
unified_example["relations"] = []
|
553 |
-
skipped_relations = set()
|
554 |
-
for ann in brat_parse["relations"]:
|
555 |
-
if (
|
556 |
-
ann["head"]["ref_id"] not in anno_ids
|
557 |
-
or ann["tail"]["ref_id"] not in anno_ids
|
558 |
-
):
|
559 |
-
skipped_relations.add(ann["id"])
|
560 |
-
continue
|
561 |
-
unified_example["relations"].append(
|
562 |
-
{
|
563 |
-
"arg1_id": id_prefix + ann["head"]["ref_id"],
|
564 |
-
"arg2_id": id_prefix + ann["tail"]["ref_id"],
|
565 |
-
"id": id_prefix + ann["id"],
|
566 |
-
"type": ann["type"],
|
567 |
-
"normalized": [],
|
568 |
-
}
|
569 |
-
)
|
570 |
-
if len(skipped_relations) > 0:
|
571 |
-
example_id = brat_parse["document_id"]
|
572 |
-
logger.info(
|
573 |
-
f"Example:{example_id}: The `bigbio_kb` schema allows `relations` only between entities."
|
574 |
-
f" Skip (for now): "
|
575 |
-
f"{list(skipped_relations)}"
|
576 |
-
)
|
577 |
-
|
578 |
-
# get coreferences
|
579 |
-
unified_example["coreferences"] = []
|
580 |
-
for i, ann in enumerate(brat_parse["equivalences"], start=1):
|
581 |
-
is_entity_cluster = True
|
582 |
-
for ref_id in ann["ref_ids"]:
|
583 |
-
if not ref_id.startswith("T"): # not textbound -> no entity
|
584 |
-
is_entity_cluster = False
|
585 |
-
elif ref_id not in anno_ids: # event trigger -> no entity
|
586 |
-
is_entity_cluster = False
|
587 |
-
if is_entity_cluster:
|
588 |
-
entity_ids = [id_prefix + i for i in ann["ref_ids"]]
|
589 |
-
unified_example["coreferences"].append(
|
590 |
-
{"id": id_prefix + str(i), "entity_ids": entity_ids}
|
591 |
-
)
|
592 |
-
return unified_example
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
cpi.py
DELETED
@@ -1,295 +0,0 @@
|
|
1 |
-
# coding=utf-8
|
2 |
-
# Copyright 2022 The HuggingFace Datasets Authors and the current dataset script contributor.
|
3 |
-
#
|
4 |
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
-
# you may not use this file except in compliance with the License.
|
6 |
-
# You may obtain a copy of the License at
|
7 |
-
#
|
8 |
-
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
-
#
|
10 |
-
# Unless required by applicable law or agreed to in writing, software
|
11 |
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
-
# See the License for the specific language governing permissions and
|
14 |
-
# limitations under the License.
|
15 |
-
"""
|
16 |
-
The compound-protein relationship (CPI) dataset consists of 2,613 sentences from abstracts containing
|
17 |
-
annotations of proteins, small molecules, and their relationships. For further information see:
|
18 |
-
https://pubmed.ncbi.nlm.nih.gov/32126064/ and https://github.com/KerstenDoering/CPI-Pipeline
|
19 |
-
"""
|
20 |
-
import xml.etree.ElementTree as ET
|
21 |
-
from pathlib import Path
|
22 |
-
from typing import Dict, Iterator, Tuple
|
23 |
-
|
24 |
-
import datasets
|
25 |
-
|
26 |
-
from .bigbiohub import kb_features
|
27 |
-
from .bigbiohub import BigBioConfig
|
28 |
-
from .bigbiohub import Tasks
|
29 |
-
|
30 |
-
_LANGUAGES = ['English']
|
31 |
-
_PUBMED = True
|
32 |
-
_LOCAL = False
|
33 |
-
_CITATION = """\
|
34 |
-
@article{doring2020automated,
|
35 |
-
title={Automated recognition of functional compound-protein relationships in literature},
|
36 |
-
author={D{\"o}ring, Kersten and Qaseem, Ammar and Becer, Michael and Li, Jianyu and Mishra, Pankaj and Gao, Mingjie and Kirchner, Pascal and Sauter, Florian and Telukunta, Kiran K and Moumbock, Aur{\'e}lien FA and others},
|
37 |
-
journal={Plos one},
|
38 |
-
volume={15},
|
39 |
-
number={3},
|
40 |
-
pages={e0220925},
|
41 |
-
year={2020},
|
42 |
-
publisher={Public Library of Science San Francisco, CA USA}
|
43 |
-
}
|
44 |
-
"""
|
45 |
-
|
46 |
-
_DATASETNAME = "cpi"
|
47 |
-
_DISPLAYNAME = "CPI"
|
48 |
-
|
49 |
-
_DESCRIPTION = """\
|
50 |
-
The compound-protein relationship (CPI) dataset consists of 2,613 sentences from abstracts containing \
|
51 |
-
annotations of proteins, small molecules, and their relationships
|
52 |
-
"""
|
53 |
-
|
54 |
-
_HOMEPAGE = "https://github.com/KerstenDoering/CPI-Pipeline"
|
55 |
-
|
56 |
-
_LICENSE = 'ISC License'
|
57 |
-
|
58 |
-
_URLS = {
|
59 |
-
"CPI": "https://github.com/KerstenDoering/CPI-Pipeline/raw/master/data_sets/xml/CPI-DS.xml",
|
60 |
-
"CPI_IV": "https://github.com/KerstenDoering/CPI-Pipeline/raw/master/data_sets/xml/CPI-DS_IV.xml",
|
61 |
-
"CPI_NIV": "https://github.com/KerstenDoering/CPI-Pipeline/raw/master/data_sets/xml/CPI-DS_IV.xml",
|
62 |
-
}
|
63 |
-
|
64 |
-
_SUPPORTED_TASKS = [Tasks.NAMED_ENTITY_RECOGNITION, Tasks.NAMED_ENTITY_DISAMBIGUATION, Tasks.RELATION_EXTRACTION]
|
65 |
-
|
66 |
-
_SOURCE_VERSION = "1.0.2"
|
67 |
-
_BIGBIO_VERSION = "1.0.0"
|
68 |
-
|
69 |
-
|
70 |
-
class CpiDataset(datasets.GeneratorBasedBuilder):
|
71 |
-
"""The compound-protein relationship (CPI) dataset"""
|
72 |
-
|
73 |
-
ENTITY_TYPE_TO_DB_NAME = {"compound": "PubChem", "protein": "UniProt"}
|
74 |
-
|
75 |
-
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION)
|
76 |
-
BIGBIO_VERSION = datasets.Version(_BIGBIO_VERSION)
|
77 |
-
|
78 |
-
BUILDER_CONFIGS = [
|
79 |
-
BigBioConfig(
|
80 |
-
name="cpi_source",
|
81 |
-
version=SOURCE_VERSION,
|
82 |
-
description="CPI source schema",
|
83 |
-
schema="source",
|
84 |
-
subset_id="cpi",
|
85 |
-
),
|
86 |
-
BigBioConfig(
|
87 |
-
name="cpi_iv_source",
|
88 |
-
version=SOURCE_VERSION,
|
89 |
-
description="CPI source schema - subset with interaction verbs",
|
90 |
-
schema="source",
|
91 |
-
subset_id="cpi_iv",
|
92 |
-
),
|
93 |
-
BigBioConfig(
|
94 |
-
name="cpi_niv_source",
|
95 |
-
version=SOURCE_VERSION,
|
96 |
-
description="CPI source schema - subset without interaction verbs",
|
97 |
-
schema="source",
|
98 |
-
subset_id="cpi_niv",
|
99 |
-
),
|
100 |
-
BigBioConfig(
|
101 |
-
name="cpi_bigbio_kb",
|
102 |
-
version=BIGBIO_VERSION,
|
103 |
-
description="CPI BigBio schema",
|
104 |
-
schema="bigbio_kb",
|
105 |
-
subset_id="cpi",
|
106 |
-
),
|
107 |
-
]
|
108 |
-
|
109 |
-
DEFAULT_CONFIG_NAME = "cpi_source"
|
110 |
-
|
111 |
-
def _info(self):
|
112 |
-
if self.config.schema == "source":
|
113 |
-
features = datasets.Features(
|
114 |
-
{
|
115 |
-
"document_id": datasets.Value("string"),
|
116 |
-
"document_orig_id": datasets.Value("string"),
|
117 |
-
"sentences": [
|
118 |
-
{
|
119 |
-
"sentence_id": datasets.Value("string"),
|
120 |
-
"sentence_orig_id": datasets.Value("string"),
|
121 |
-
"text": datasets.Value("string"),
|
122 |
-
"entities": [
|
123 |
-
{
|
124 |
-
"entity_id": datasets.Value("string"),
|
125 |
-
"entity_orig_id": datasets.Sequence(datasets.Value("string")),
|
126 |
-
"type": datasets.Value("string"),
|
127 |
-
"offset": datasets.Sequence(datasets.Value("int32")),
|
128 |
-
"text": datasets.Value("string"),
|
129 |
-
}
|
130 |
-
],
|
131 |
-
"pairs": [
|
132 |
-
{
|
133 |
-
"pair_id": datasets.Value("string"),
|
134 |
-
"e1": datasets.Value("string"),
|
135 |
-
"e2": datasets.Value("string"),
|
136 |
-
"interaction": datasets.Value("bool"),
|
137 |
-
}
|
138 |
-
],
|
139 |
-
}
|
140 |
-
],
|
141 |
-
}
|
142 |
-
)
|
143 |
-
|
144 |
-
elif self.config.schema == "bigbio_kb":
|
145 |
-
features = kb_features
|
146 |
-
|
147 |
-
return datasets.DatasetInfo(
|
148 |
-
description=_DESCRIPTION,
|
149 |
-
features=features,
|
150 |
-
homepage=_HOMEPAGE,
|
151 |
-
license=str(_LICENSE),
|
152 |
-
citation=_CITATION,
|
153 |
-
)
|
154 |
-
|
155 |
-
def _split_generators(self, dl_manager):
|
156 |
-
# Distinguish based on the subset id (cpi, cpi_iv, cpi_niv) which file to load
|
157 |
-
subset_url = _URLS[self.config.subset_id.upper()]
|
158 |
-
subset_file = dl_manager.download_and_extract(subset_url)
|
159 |
-
|
160 |
-
return [
|
161 |
-
datasets.SplitGenerator(
|
162 |
-
name=datasets.Split.TRAIN,
|
163 |
-
gen_kwargs={"subset_file": subset_file},
|
164 |
-
)
|
165 |
-
]
|
166 |
-
|
167 |
-
def _generate_examples(self, subset_file: Path) -> Iterator[Tuple[str, Dict]]:
|
168 |
-
if self.config.schema == "source":
|
169 |
-
for doc_id, document in self._read_source_examples(subset_file):
|
170 |
-
yield doc_id, document
|
171 |
-
|
172 |
-
elif self.config.name == "cpi_bigbio_kb":
|
173 |
-
# Note: The sentences in a CPI document does not (necessarily) occur consecutive in
|
174 |
-
# the original publication. Nevertheless, in this implementation we capture all sentences
|
175 |
-
# of a document in one kb-schema document to explicitly model documents.
|
176 |
-
|
177 |
-
# Transform each source-schema document to kb-schema document
|
178 |
-
for doc_id, source_document in self._read_source_examples(subset_file):
|
179 |
-
sentence_offset = 0
|
180 |
-
passages = []
|
181 |
-
entities = []
|
182 |
-
relations = []
|
183 |
-
|
184 |
-
# Transform all sentences to kb-schema sentences
|
185 |
-
for source_sentence in source_document["sentences"]:
|
186 |
-
text = source_sentence["text"]
|
187 |
-
passages.append(
|
188 |
-
{
|
189 |
-
"id": source_sentence["sentence_id"],
|
190 |
-
"text": [text],
|
191 |
-
"offsets": [[sentence_offset + 0, sentence_offset + len(text)]],
|
192 |
-
"type": "",
|
193 |
-
}
|
194 |
-
)
|
195 |
-
|
196 |
-
# Transform source-schema entities to kb-schema entities
|
197 |
-
for source_entity in source_sentence["entities"]:
|
198 |
-
db_name = self.ENTITY_TYPE_TO_DB_NAME[source_entity["type"]]
|
199 |
-
|
200 |
-
entity_offset = source_entity["offset"]
|
201 |
-
entity_offset = [sentence_offset + entity_offset[0], sentence_offset + entity_offset[1]]
|
202 |
-
|
203 |
-
entities.append(
|
204 |
-
{
|
205 |
-
"id": source_entity["entity_id"],
|
206 |
-
"type": source_entity["type"],
|
207 |
-
"text": [source_entity["text"]],
|
208 |
-
"offsets": [entity_offset],
|
209 |
-
"normalized": [
|
210 |
-
{"db_name": db_name, "db_id": db_id} for db_id in source_entity["entity_orig_id"]
|
211 |
-
],
|
212 |
-
}
|
213 |
-
)
|
214 |
-
|
215 |
-
# Transform source-schema pairs to kb-schema relations
|
216 |
-
for source_pair in source_sentence["pairs"]:
|
217 |
-
# Ignore pairs that are annotated to be not in a relationship!
|
218 |
-
if not source_pair["interaction"]:
|
219 |
-
continue
|
220 |
-
|
221 |
-
relations.append(
|
222 |
-
{
|
223 |
-
"id": source_pair["pair_id"],
|
224 |
-
"type": "compound-protein-interaction",
|
225 |
-
"arg1_id": source_pair["e1"],
|
226 |
-
"arg2_id": source_pair["e2"],
|
227 |
-
"normalized": [],
|
228 |
-
}
|
229 |
-
)
|
230 |
-
|
231 |
-
sentence_offset += len(text) + 1
|
232 |
-
|
233 |
-
kb_document = {
|
234 |
-
"id": source_document["document_id"],
|
235 |
-
"document_id": source_document["document_orig_id"],
|
236 |
-
"passages": passages,
|
237 |
-
"entities": entities,
|
238 |
-
"relations": relations,
|
239 |
-
"events": [],
|
240 |
-
"coreferences": [],
|
241 |
-
}
|
242 |
-
|
243 |
-
yield source_document["document_id"], kb_document
|
244 |
-
|
245 |
-
def _read_source_examples(self, input_file: Path) -> Iterator[Tuple[str, Dict]]:
|
246 |
-
"""
|
247 |
-
Reads all instances of the given input file and parses them into the source format.
|
248 |
-
"""
|
249 |
-
root = ET.parse(input_file)
|
250 |
-
for document in root.iter("document"):
|
251 |
-
sentences = []
|
252 |
-
for sentence in document.iter("sentence"):
|
253 |
-
entities = []
|
254 |
-
for entity in sentence.iter("entity"):
|
255 |
-
char_offsets = entity.attrib["charOffset"].split("-")
|
256 |
-
start, end = int(char_offsets[0]), int(char_offsets[1])
|
257 |
-
|
258 |
-
entities.append(
|
259 |
-
{
|
260 |
-
"entity_id": entity.attrib["id"],
|
261 |
-
"entity_orig_id": entity.attrib["origId"].split(","),
|
262 |
-
"type": entity.attrib["type"],
|
263 |
-
"text": entity.attrib["text"],
|
264 |
-
"offset": [start, end],
|
265 |
-
}
|
266 |
-
)
|
267 |
-
|
268 |
-
pairs = []
|
269 |
-
for pair in sentence.iter("pair"):
|
270 |
-
pairs.append(
|
271 |
-
{
|
272 |
-
"pair_id": pair.attrib["id"],
|
273 |
-
"e1": pair.attrib["e1"],
|
274 |
-
"e2": pair.attrib["e2"],
|
275 |
-
"interaction": pair.attrib["interaction"].lower() == "true",
|
276 |
-
}
|
277 |
-
)
|
278 |
-
|
279 |
-
sentences.append(
|
280 |
-
{
|
281 |
-
"sentence_id": sentence.attrib["id"],
|
282 |
-
"sentence_orig_id": sentence.attrib["origId"],
|
283 |
-
"text": sentence.attrib["text"],
|
284 |
-
"entities": entities,
|
285 |
-
"pairs": pairs,
|
286 |
-
}
|
287 |
-
)
|
288 |
-
|
289 |
-
document_dict = {
|
290 |
-
"document_id": document.attrib["id"],
|
291 |
-
"document_orig_id": document.attrib["origId"],
|
292 |
-
"sentences": sentences,
|
293 |
-
}
|
294 |
-
|
295 |
-
yield document.attrib["id"], document_dict
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
cpi_bigbio_kb/cpi-train.parquet
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:05286f477e525d0782aa1e05c83c66b8886ffc7b0135f7fad3cd710dc8eaaa74
|
3 |
+
size 831944
|
cpi_iv_source/cpi-train.parquet
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:760fea3954edfa147d4bca434d5bffff0b47ef1f84472a802020aa7928f9edfe
|
3 |
+
size 405525
|
cpi_niv_source/cpi-train.parquet
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:760fea3954edfa147d4bca434d5bffff0b47ef1f84472a802020aa7928f9edfe
|
3 |
+
size 405525
|
cpi_source/cpi-train.parquet
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5a8afe948e01554be3cda9547250767f1aff53f28b232272dac8a6c9d1cdd39a
|
3 |
+
size 853376
|