Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
parquet-converter commited on
Commit
b118e8d
·
1 Parent(s): 970237b

Update parquet files

Browse files
README.md DELETED
@@ -1,50 +0,0 @@
1
-
2
- ---
3
- language:
4
- - en
5
- bigbio_language:
6
- - English
7
- license: other
8
- multilinguality: monolingual
9
- bigbio_license_shortname: ISC
10
- pretty_name: CPI
11
- homepage: https://github.com/KerstenDoering/CPI-Pipeline
12
- bigbio_pubmed: True
13
- bigbio_public: True
14
- bigbio_tasks:
15
- - NAMED_ENTITY_RECOGNITION
16
- - NAMED_ENTITY_DISAMBIGUATION
17
- - RELATION_EXTRACTION
18
- ---
19
-
20
-
21
- # Dataset Card for CPI
22
-
23
- ## Dataset Description
24
-
25
- - **Homepage:** https://github.com/KerstenDoering/CPI-Pipeline
26
- - **Pubmed:** True
27
- - **Public:** True
28
- - **Tasks:** NER,NED,RE
29
-
30
-
31
- The compound-protein relationship (CPI) dataset consists of 2,613 sentences
32
- from abstracts containing annotations of proteins, small molecules, and their
33
- relationships.
34
-
35
-
36
-
37
- ## Citation Information
38
-
39
- ```
40
- @article{doring2020automated,
41
- title={Automated recognition of functional compound-protein relationships in literature},
42
- author={D{\"o}ring, Kersten and Qaseem, Ammar and Becer, Michael and Li, Jianyu and Mishra, Pankaj and Gao, Mingjie and Kirchner, Pascal and Sauter, Florian and Telukunta, Kiran K and Moumbock, Aur{\'e}lien FA and others},
43
- journal={Plos one},
44
- volume={15},
45
- number={3},
46
- pages={e0220925},
47
- year={2020},
48
- publisher={Public Library of Science San Francisco, CA USA}
49
- }
50
- ```
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bigbiohub.py DELETED
@@ -1,592 +0,0 @@
1
- from collections import defaultdict
2
- from dataclasses import dataclass
3
- from enum import Enum
4
- import logging
5
- from pathlib import Path
6
- from types import SimpleNamespace
7
- from typing import TYPE_CHECKING, Dict, Iterable, List, Tuple
8
-
9
- import datasets
10
-
11
- if TYPE_CHECKING:
12
- import bioc
13
-
14
- logger = logging.getLogger(__name__)
15
-
16
-
17
- BigBioValues = SimpleNamespace(NULL="<BB_NULL_STR>")
18
-
19
-
20
- @dataclass
21
- class BigBioConfig(datasets.BuilderConfig):
22
- """BuilderConfig for BigBio."""
23
-
24
- name: str = None
25
- version: datasets.Version = None
26
- description: str = None
27
- schema: str = None
28
- subset_id: str = None
29
-
30
-
31
- class Tasks(Enum):
32
- NAMED_ENTITY_RECOGNITION = "NER"
33
- NAMED_ENTITY_DISAMBIGUATION = "NED"
34
- EVENT_EXTRACTION = "EE"
35
- RELATION_EXTRACTION = "RE"
36
- COREFERENCE_RESOLUTION = "COREF"
37
- QUESTION_ANSWERING = "QA"
38
- TEXTUAL_ENTAILMENT = "TE"
39
- SEMANTIC_SIMILARITY = "STS"
40
- TEXT_PAIRS_CLASSIFICATION = "TXT2CLASS"
41
- PARAPHRASING = "PARA"
42
- TRANSLATION = "TRANSL"
43
- SUMMARIZATION = "SUM"
44
- TEXT_CLASSIFICATION = "TXTCLASS"
45
-
46
-
47
- entailment_features = datasets.Features(
48
- {
49
- "id": datasets.Value("string"),
50
- "premise": datasets.Value("string"),
51
- "hypothesis": datasets.Value("string"),
52
- "label": datasets.Value("string"),
53
- }
54
- )
55
-
56
- pairs_features = datasets.Features(
57
- {
58
- "id": datasets.Value("string"),
59
- "document_id": datasets.Value("string"),
60
- "text_1": datasets.Value("string"),
61
- "text_2": datasets.Value("string"),
62
- "label": datasets.Value("string"),
63
- }
64
- )
65
-
66
- qa_features = datasets.Features(
67
- {
68
- "id": datasets.Value("string"),
69
- "question_id": datasets.Value("string"),
70
- "document_id": datasets.Value("string"),
71
- "question": datasets.Value("string"),
72
- "type": datasets.Value("string"),
73
- "choices": [datasets.Value("string")],
74
- "context": datasets.Value("string"),
75
- "answer": datasets.Sequence(datasets.Value("string")),
76
- }
77
- )
78
-
79
- text_features = datasets.Features(
80
- {
81
- "id": datasets.Value("string"),
82
- "document_id": datasets.Value("string"),
83
- "text": datasets.Value("string"),
84
- "labels": [datasets.Value("string")],
85
- }
86
- )
87
-
88
- text2text_features = datasets.Features(
89
- {
90
- "id": datasets.Value("string"),
91
- "document_id": datasets.Value("string"),
92
- "text_1": datasets.Value("string"),
93
- "text_2": datasets.Value("string"),
94
- "text_1_name": datasets.Value("string"),
95
- "text_2_name": datasets.Value("string"),
96
- }
97
- )
98
-
99
- kb_features = datasets.Features(
100
- {
101
- "id": datasets.Value("string"),
102
- "document_id": datasets.Value("string"),
103
- "passages": [
104
- {
105
- "id": datasets.Value("string"),
106
- "type": datasets.Value("string"),
107
- "text": datasets.Sequence(datasets.Value("string")),
108
- "offsets": datasets.Sequence([datasets.Value("int32")]),
109
- }
110
- ],
111
- "entities": [
112
- {
113
- "id": datasets.Value("string"),
114
- "type": datasets.Value("string"),
115
- "text": datasets.Sequence(datasets.Value("string")),
116
- "offsets": datasets.Sequence([datasets.Value("int32")]),
117
- "normalized": [
118
- {
119
- "db_name": datasets.Value("string"),
120
- "db_id": datasets.Value("string"),
121
- }
122
- ],
123
- }
124
- ],
125
- "events": [
126
- {
127
- "id": datasets.Value("string"),
128
- "type": datasets.Value("string"),
129
- # refers to the text_bound_annotation of the trigger
130
- "trigger": {
131
- "text": datasets.Sequence(datasets.Value("string")),
132
- "offsets": datasets.Sequence([datasets.Value("int32")]),
133
- },
134
- "arguments": [
135
- {
136
- "role": datasets.Value("string"),
137
- "ref_id": datasets.Value("string"),
138
- }
139
- ],
140
- }
141
- ],
142
- "coreferences": [
143
- {
144
- "id": datasets.Value("string"),
145
- "entity_ids": datasets.Sequence(datasets.Value("string")),
146
- }
147
- ],
148
- "relations": [
149
- {
150
- "id": datasets.Value("string"),
151
- "type": datasets.Value("string"),
152
- "arg1_id": datasets.Value("string"),
153
- "arg2_id": datasets.Value("string"),
154
- "normalized": [
155
- {
156
- "db_name": datasets.Value("string"),
157
- "db_id": datasets.Value("string"),
158
- }
159
- ],
160
- }
161
- ],
162
- }
163
- )
164
-
165
-
166
- TASK_TO_SCHEMA = {
167
- Tasks.NAMED_ENTITY_RECOGNITION.name: "KB",
168
- Tasks.NAMED_ENTITY_DISAMBIGUATION.name: "KB",
169
- Tasks.EVENT_EXTRACTION.name: "KB",
170
- Tasks.RELATION_EXTRACTION.name: "KB",
171
- Tasks.COREFERENCE_RESOLUTION.name: "KB",
172
- Tasks.QUESTION_ANSWERING.name: "QA",
173
- Tasks.TEXTUAL_ENTAILMENT.name: "TE",
174
- Tasks.SEMANTIC_SIMILARITY.name: "PAIRS",
175
- Tasks.TEXT_PAIRS_CLASSIFICATION.name: "PAIRS",
176
- Tasks.PARAPHRASING.name: "T2T",
177
- Tasks.TRANSLATION.name: "T2T",
178
- Tasks.SUMMARIZATION.name: "T2T",
179
- Tasks.TEXT_CLASSIFICATION.name: "TEXT",
180
- }
181
-
182
- SCHEMA_TO_TASKS = defaultdict(set)
183
- for task, schema in TASK_TO_SCHEMA.items():
184
- SCHEMA_TO_TASKS[schema].add(task)
185
- SCHEMA_TO_TASKS = dict(SCHEMA_TO_TASKS)
186
-
187
- VALID_TASKS = set(TASK_TO_SCHEMA.keys())
188
- VALID_SCHEMAS = set(TASK_TO_SCHEMA.values())
189
-
190
- SCHEMA_TO_FEATURES = {
191
- "KB": kb_features,
192
- "QA": qa_features,
193
- "TE": entailment_features,
194
- "T2T": text2text_features,
195
- "TEXT": text_features,
196
- "PAIRS": pairs_features,
197
- }
198
-
199
-
200
- def get_texts_and_offsets_from_bioc_ann(ann: "bioc.BioCAnnotation") -> Tuple:
201
-
202
- offsets = [(loc.offset, loc.offset + loc.length) for loc in ann.locations]
203
-
204
- text = ann.text
205
-
206
- if len(offsets) > 1:
207
- i = 0
208
- texts = []
209
- for start, end in offsets:
210
- chunk_len = end - start
211
- texts.append(text[i : chunk_len + i])
212
- i += chunk_len
213
- while i < len(text) and text[i] == " ":
214
- i += 1
215
- else:
216
- texts = [text]
217
-
218
- return offsets, texts
219
-
220
-
221
- def remove_prefix(a: str, prefix: str) -> str:
222
- if a.startswith(prefix):
223
- a = a[len(prefix) :]
224
- return a
225
-
226
-
227
- def parse_brat_file(
228
- txt_file: Path,
229
- annotation_file_suffixes: List[str] = None,
230
- parse_notes: bool = False,
231
- ) -> Dict:
232
- """
233
- Parse a brat file into the schema defined below.
234
- `txt_file` should be the path to the brat '.txt' file you want to parse, e.g. 'data/1234.txt'
235
- Assumes that the annotations are contained in one or more of the corresponding '.a1', '.a2' or '.ann' files,
236
- e.g. 'data/1234.ann' or 'data/1234.a1' and 'data/1234.a2'.
237
- Will include annotator notes, when `parse_notes == True`.
238
- brat_features = datasets.Features(
239
- {
240
- "id": datasets.Value("string"),
241
- "document_id": datasets.Value("string"),
242
- "text": datasets.Value("string"),
243
- "text_bound_annotations": [ # T line in brat, e.g. type or event trigger
244
- {
245
- "offsets": datasets.Sequence([datasets.Value("int32")]),
246
- "text": datasets.Sequence(datasets.Value("string")),
247
- "type": datasets.Value("string"),
248
- "id": datasets.Value("string"),
249
- }
250
- ],
251
- "events": [ # E line in brat
252
- {
253
- "trigger": datasets.Value(
254
- "string"
255
- ), # refers to the text_bound_annotation of the trigger,
256
- "id": datasets.Value("string"),
257
- "type": datasets.Value("string"),
258
- "arguments": datasets.Sequence(
259
- {
260
- "role": datasets.Value("string"),
261
- "ref_id": datasets.Value("string"),
262
- }
263
- ),
264
- }
265
- ],
266
- "relations": [ # R line in brat
267
- {
268
- "id": datasets.Value("string"),
269
- "head": {
270
- "ref_id": datasets.Value("string"),
271
- "role": datasets.Value("string"),
272
- },
273
- "tail": {
274
- "ref_id": datasets.Value("string"),
275
- "role": datasets.Value("string"),
276
- },
277
- "type": datasets.Value("string"),
278
- }
279
- ],
280
- "equivalences": [ # Equiv line in brat
281
- {
282
- "id": datasets.Value("string"),
283
- "ref_ids": datasets.Sequence(datasets.Value("string")),
284
- }
285
- ],
286
- "attributes": [ # M or A lines in brat
287
- {
288
- "id": datasets.Value("string"),
289
- "type": datasets.Value("string"),
290
- "ref_id": datasets.Value("string"),
291
- "value": datasets.Value("string"),
292
- }
293
- ],
294
- "normalizations": [ # N lines in brat
295
- {
296
- "id": datasets.Value("string"),
297
- "type": datasets.Value("string"),
298
- "ref_id": datasets.Value("string"),
299
- "resource_name": datasets.Value(
300
- "string"
301
- ), # Name of the resource, e.g. "Wikipedia"
302
- "cuid": datasets.Value(
303
- "string"
304
- ), # ID in the resource, e.g. 534366
305
- "text": datasets.Value(
306
- "string"
307
- ), # Human readable description/name of the entity, e.g. "Barack Obama"
308
- }
309
- ],
310
- ### OPTIONAL: Only included when `parse_notes == True`
311
- "notes": [ # # lines in brat
312
- {
313
- "id": datasets.Value("string"),
314
- "type": datasets.Value("string"),
315
- "ref_id": datasets.Value("string"),
316
- "text": datasets.Value("string"),
317
- }
318
- ],
319
- },
320
- )
321
- """
322
-
323
- example = {}
324
- example["document_id"] = txt_file.with_suffix("").name
325
- with txt_file.open() as f:
326
- example["text"] = f.read()
327
-
328
- # If no specific suffixes of the to-be-read annotation files are given - take standard suffixes
329
- # for event extraction
330
- if annotation_file_suffixes is None:
331
- annotation_file_suffixes = [".a1", ".a2", ".ann"]
332
-
333
- if len(annotation_file_suffixes) == 0:
334
- raise AssertionError(
335
- "At least one suffix for the to-be-read annotation files should be given!"
336
- )
337
-
338
- ann_lines = []
339
- for suffix in annotation_file_suffixes:
340
- annotation_file = txt_file.with_suffix(suffix)
341
- try:
342
- with annotation_file.open() as f:
343
- ann_lines.extend(f.readlines())
344
- except Exception:
345
- continue
346
-
347
- example["text_bound_annotations"] = []
348
- example["events"] = []
349
- example["relations"] = []
350
- example["equivalences"] = []
351
- example["attributes"] = []
352
- example["normalizations"] = []
353
-
354
- if parse_notes:
355
- example["notes"] = []
356
-
357
- for line in ann_lines:
358
- line = line.strip()
359
- if not line:
360
- continue
361
-
362
- if line.startswith("T"): # Text bound
363
- ann = {}
364
- fields = line.split("\t")
365
-
366
- ann["id"] = fields[0]
367
- ann["type"] = fields[1].split()[0]
368
- ann["offsets"] = []
369
- span_str = remove_prefix(fields[1], (ann["type"] + " "))
370
- text = fields[2]
371
- for span in span_str.split(";"):
372
- start, end = span.split()
373
- ann["offsets"].append([int(start), int(end)])
374
-
375
- # Heuristically split text of discontiguous entities into chunks
376
- ann["text"] = []
377
- if len(ann["offsets"]) > 1:
378
- i = 0
379
- for start, end in ann["offsets"]:
380
- chunk_len = end - start
381
- ann["text"].append(text[i : chunk_len + i])
382
- i += chunk_len
383
- while i < len(text) and text[i] == " ":
384
- i += 1
385
- else:
386
- ann["text"] = [text]
387
-
388
- example["text_bound_annotations"].append(ann)
389
-
390
- elif line.startswith("E"):
391
- ann = {}
392
- fields = line.split("\t")
393
-
394
- ann["id"] = fields[0]
395
-
396
- ann["type"], ann["trigger"] = fields[1].split()[0].split(":")
397
-
398
- ann["arguments"] = []
399
- for role_ref_id in fields[1].split()[1:]:
400
- argument = {
401
- "role": (role_ref_id.split(":"))[0],
402
- "ref_id": (role_ref_id.split(":"))[1],
403
- }
404
- ann["arguments"].append(argument)
405
-
406
- example["events"].append(ann)
407
-
408
- elif line.startswith("R"):
409
- ann = {}
410
- fields = line.split("\t")
411
-
412
- ann["id"] = fields[0]
413
- ann["type"] = fields[1].split()[0]
414
-
415
- ann["head"] = {
416
- "role": fields[1].split()[1].split(":")[0],
417
- "ref_id": fields[1].split()[1].split(":")[1],
418
- }
419
- ann["tail"] = {
420
- "role": fields[1].split()[2].split(":")[0],
421
- "ref_id": fields[1].split()[2].split(":")[1],
422
- }
423
-
424
- example["relations"].append(ann)
425
-
426
- # '*' seems to be the legacy way to mark equivalences,
427
- # but I couldn't find any info on the current way
428
- # this might have to be adapted dependent on the brat version
429
- # of the annotation
430
- elif line.startswith("*"):
431
- ann = {}
432
- fields = line.split("\t")
433
-
434
- ann["id"] = fields[0]
435
- ann["ref_ids"] = fields[1].split()[1:]
436
-
437
- example["equivalences"].append(ann)
438
-
439
- elif line.startswith("A") or line.startswith("M"):
440
- ann = {}
441
- fields = line.split("\t")
442
-
443
- ann["id"] = fields[0]
444
-
445
- info = fields[1].split()
446
- ann["type"] = info[0]
447
- ann["ref_id"] = info[1]
448
-
449
- if len(info) > 2:
450
- ann["value"] = info[2]
451
- else:
452
- ann["value"] = ""
453
-
454
- example["attributes"].append(ann)
455
-
456
- elif line.startswith("N"):
457
- ann = {}
458
- fields = line.split("\t")
459
-
460
- ann["id"] = fields[0]
461
- ann["text"] = fields[2]
462
-
463
- info = fields[1].split()
464
-
465
- ann["type"] = info[0]
466
- ann["ref_id"] = info[1]
467
- ann["resource_name"] = info[2].split(":")[0]
468
- ann["cuid"] = info[2].split(":")[1]
469
- example["normalizations"].append(ann)
470
-
471
- elif parse_notes and line.startswith("#"):
472
- ann = {}
473
- fields = line.split("\t")
474
-
475
- ann["id"] = fields[0]
476
- ann["text"] = fields[2] if len(fields) == 3 else BigBioValues.NULL
477
-
478
- info = fields[1].split()
479
-
480
- ann["type"] = info[0]
481
- ann["ref_id"] = info[1]
482
- example["notes"].append(ann)
483
-
484
- return example
485
-
486
-
487
- def brat_parse_to_bigbio_kb(brat_parse: Dict) -> Dict:
488
- """
489
- Transform a brat parse (conforming to the standard brat schema) obtained with
490
- `parse_brat_file` into a dictionary conforming to the `bigbio-kb` schema (as defined in ../schemas/kb.py)
491
- :param brat_parse:
492
- """
493
-
494
- unified_example = {}
495
-
496
- # Prefix all ids with document id to ensure global uniqueness,
497
- # because brat ids are only unique within their document
498
- id_prefix = brat_parse["document_id"] + "_"
499
-
500
- # identical
501
- unified_example["document_id"] = brat_parse["document_id"]
502
- unified_example["passages"] = [
503
- {
504
- "id": id_prefix + "_text",
505
- "type": "abstract",
506
- "text": [brat_parse["text"]],
507
- "offsets": [[0, len(brat_parse["text"])]],
508
- }
509
- ]
510
-
511
- # get normalizations
512
- ref_id_to_normalizations = defaultdict(list)
513
- for normalization in brat_parse["normalizations"]:
514
- ref_id_to_normalizations[normalization["ref_id"]].append(
515
- {
516
- "db_name": normalization["resource_name"],
517
- "db_id": normalization["cuid"],
518
- }
519
- )
520
-
521
- # separate entities and event triggers
522
- unified_example["events"] = []
523
- non_event_ann = brat_parse["text_bound_annotations"].copy()
524
- for event in brat_parse["events"]:
525
- event = event.copy()
526
- event["id"] = id_prefix + event["id"]
527
- trigger = next(
528
- tr
529
- for tr in brat_parse["text_bound_annotations"]
530
- if tr["id"] == event["trigger"]
531
- )
532
- if trigger in non_event_ann:
533
- non_event_ann.remove(trigger)
534
- event["trigger"] = {
535
- "text": trigger["text"].copy(),
536
- "offsets": trigger["offsets"].copy(),
537
- }
538
- for argument in event["arguments"]:
539
- argument["ref_id"] = id_prefix + argument["ref_id"]
540
-
541
- unified_example["events"].append(event)
542
-
543
- unified_example["entities"] = []
544
- anno_ids = [ref_id["id"] for ref_id in non_event_ann]
545
- for ann in non_event_ann:
546
- entity_ann = ann.copy()
547
- entity_ann["id"] = id_prefix + entity_ann["id"]
548
- entity_ann["normalized"] = ref_id_to_normalizations[ann["id"]]
549
- unified_example["entities"].append(entity_ann)
550
-
551
- # massage relations
552
- unified_example["relations"] = []
553
- skipped_relations = set()
554
- for ann in brat_parse["relations"]:
555
- if (
556
- ann["head"]["ref_id"] not in anno_ids
557
- or ann["tail"]["ref_id"] not in anno_ids
558
- ):
559
- skipped_relations.add(ann["id"])
560
- continue
561
- unified_example["relations"].append(
562
- {
563
- "arg1_id": id_prefix + ann["head"]["ref_id"],
564
- "arg2_id": id_prefix + ann["tail"]["ref_id"],
565
- "id": id_prefix + ann["id"],
566
- "type": ann["type"],
567
- "normalized": [],
568
- }
569
- )
570
- if len(skipped_relations) > 0:
571
- example_id = brat_parse["document_id"]
572
- logger.info(
573
- f"Example:{example_id}: The `bigbio_kb` schema allows `relations` only between entities."
574
- f" Skip (for now): "
575
- f"{list(skipped_relations)}"
576
- )
577
-
578
- # get coreferences
579
- unified_example["coreferences"] = []
580
- for i, ann in enumerate(brat_parse["equivalences"], start=1):
581
- is_entity_cluster = True
582
- for ref_id in ann["ref_ids"]:
583
- if not ref_id.startswith("T"): # not textbound -> no entity
584
- is_entity_cluster = False
585
- elif ref_id not in anno_ids: # event trigger -> no entity
586
- is_entity_cluster = False
587
- if is_entity_cluster:
588
- entity_ids = [id_prefix + i for i in ann["ref_ids"]]
589
- unified_example["coreferences"].append(
590
- {"id": id_prefix + str(i), "entity_ids": entity_ids}
591
- )
592
- return unified_example
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cpi.py DELETED
@@ -1,295 +0,0 @@
1
- # coding=utf-8
2
- # Copyright 2022 The HuggingFace Datasets Authors and the current dataset script contributor.
3
- #
4
- # Licensed under the Apache License, Version 2.0 (the "License");
5
- # you may not use this file except in compliance with the License.
6
- # You may obtain a copy of the License at
7
- #
8
- # http://www.apache.org/licenses/LICENSE-2.0
9
- #
10
- # Unless required by applicable law or agreed to in writing, software
11
- # distributed under the License is distributed on an "AS IS" BASIS,
12
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
- # See the License for the specific language governing permissions and
14
- # limitations under the License.
15
- """
16
- The compound-protein relationship (CPI) dataset consists of 2,613 sentences from abstracts containing
17
- annotations of proteins, small molecules, and their relationships. For further information see:
18
- https://pubmed.ncbi.nlm.nih.gov/32126064/ and https://github.com/KerstenDoering/CPI-Pipeline
19
- """
20
- import xml.etree.ElementTree as ET
21
- from pathlib import Path
22
- from typing import Dict, Iterator, Tuple
23
-
24
- import datasets
25
-
26
- from .bigbiohub import kb_features
27
- from .bigbiohub import BigBioConfig
28
- from .bigbiohub import Tasks
29
-
30
- _LANGUAGES = ['English']
31
- _PUBMED = True
32
- _LOCAL = False
33
- _CITATION = """\
34
- @article{doring2020automated,
35
- title={Automated recognition of functional compound-protein relationships in literature},
36
- author={D{\"o}ring, Kersten and Qaseem, Ammar and Becer, Michael and Li, Jianyu and Mishra, Pankaj and Gao, Mingjie and Kirchner, Pascal and Sauter, Florian and Telukunta, Kiran K and Moumbock, Aur{\'e}lien FA and others},
37
- journal={Plos one},
38
- volume={15},
39
- number={3},
40
- pages={e0220925},
41
- year={2020},
42
- publisher={Public Library of Science San Francisco, CA USA}
43
- }
44
- """
45
-
46
- _DATASETNAME = "cpi"
47
- _DISPLAYNAME = "CPI"
48
-
49
- _DESCRIPTION = """\
50
- The compound-protein relationship (CPI) dataset consists of 2,613 sentences from abstracts containing \
51
- annotations of proteins, small molecules, and their relationships
52
- """
53
-
54
- _HOMEPAGE = "https://github.com/KerstenDoering/CPI-Pipeline"
55
-
56
- _LICENSE = 'ISC License'
57
-
58
- _URLS = {
59
- "CPI": "https://github.com/KerstenDoering/CPI-Pipeline/raw/master/data_sets/xml/CPI-DS.xml",
60
- "CPI_IV": "https://github.com/KerstenDoering/CPI-Pipeline/raw/master/data_sets/xml/CPI-DS_IV.xml",
61
- "CPI_NIV": "https://github.com/KerstenDoering/CPI-Pipeline/raw/master/data_sets/xml/CPI-DS_IV.xml",
62
- }
63
-
64
- _SUPPORTED_TASKS = [Tasks.NAMED_ENTITY_RECOGNITION, Tasks.NAMED_ENTITY_DISAMBIGUATION, Tasks.RELATION_EXTRACTION]
65
-
66
- _SOURCE_VERSION = "1.0.2"
67
- _BIGBIO_VERSION = "1.0.0"
68
-
69
-
70
- class CpiDataset(datasets.GeneratorBasedBuilder):
71
- """The compound-protein relationship (CPI) dataset"""
72
-
73
- ENTITY_TYPE_TO_DB_NAME = {"compound": "PubChem", "protein": "UniProt"}
74
-
75
- SOURCE_VERSION = datasets.Version(_SOURCE_VERSION)
76
- BIGBIO_VERSION = datasets.Version(_BIGBIO_VERSION)
77
-
78
- BUILDER_CONFIGS = [
79
- BigBioConfig(
80
- name="cpi_source",
81
- version=SOURCE_VERSION,
82
- description="CPI source schema",
83
- schema="source",
84
- subset_id="cpi",
85
- ),
86
- BigBioConfig(
87
- name="cpi_iv_source",
88
- version=SOURCE_VERSION,
89
- description="CPI source schema - subset with interaction verbs",
90
- schema="source",
91
- subset_id="cpi_iv",
92
- ),
93
- BigBioConfig(
94
- name="cpi_niv_source",
95
- version=SOURCE_VERSION,
96
- description="CPI source schema - subset without interaction verbs",
97
- schema="source",
98
- subset_id="cpi_niv",
99
- ),
100
- BigBioConfig(
101
- name="cpi_bigbio_kb",
102
- version=BIGBIO_VERSION,
103
- description="CPI BigBio schema",
104
- schema="bigbio_kb",
105
- subset_id="cpi",
106
- ),
107
- ]
108
-
109
- DEFAULT_CONFIG_NAME = "cpi_source"
110
-
111
- def _info(self):
112
- if self.config.schema == "source":
113
- features = datasets.Features(
114
- {
115
- "document_id": datasets.Value("string"),
116
- "document_orig_id": datasets.Value("string"),
117
- "sentences": [
118
- {
119
- "sentence_id": datasets.Value("string"),
120
- "sentence_orig_id": datasets.Value("string"),
121
- "text": datasets.Value("string"),
122
- "entities": [
123
- {
124
- "entity_id": datasets.Value("string"),
125
- "entity_orig_id": datasets.Sequence(datasets.Value("string")),
126
- "type": datasets.Value("string"),
127
- "offset": datasets.Sequence(datasets.Value("int32")),
128
- "text": datasets.Value("string"),
129
- }
130
- ],
131
- "pairs": [
132
- {
133
- "pair_id": datasets.Value("string"),
134
- "e1": datasets.Value("string"),
135
- "e2": datasets.Value("string"),
136
- "interaction": datasets.Value("bool"),
137
- }
138
- ],
139
- }
140
- ],
141
- }
142
- )
143
-
144
- elif self.config.schema == "bigbio_kb":
145
- features = kb_features
146
-
147
- return datasets.DatasetInfo(
148
- description=_DESCRIPTION,
149
- features=features,
150
- homepage=_HOMEPAGE,
151
- license=str(_LICENSE),
152
- citation=_CITATION,
153
- )
154
-
155
- def _split_generators(self, dl_manager):
156
- # Distinguish based on the subset id (cpi, cpi_iv, cpi_niv) which file to load
157
- subset_url = _URLS[self.config.subset_id.upper()]
158
- subset_file = dl_manager.download_and_extract(subset_url)
159
-
160
- return [
161
- datasets.SplitGenerator(
162
- name=datasets.Split.TRAIN,
163
- gen_kwargs={"subset_file": subset_file},
164
- )
165
- ]
166
-
167
- def _generate_examples(self, subset_file: Path) -> Iterator[Tuple[str, Dict]]:
168
- if self.config.schema == "source":
169
- for doc_id, document in self._read_source_examples(subset_file):
170
- yield doc_id, document
171
-
172
- elif self.config.name == "cpi_bigbio_kb":
173
- # Note: The sentences in a CPI document does not (necessarily) occur consecutive in
174
- # the original publication. Nevertheless, in this implementation we capture all sentences
175
- # of a document in one kb-schema document to explicitly model documents.
176
-
177
- # Transform each source-schema document to kb-schema document
178
- for doc_id, source_document in self._read_source_examples(subset_file):
179
- sentence_offset = 0
180
- passages = []
181
- entities = []
182
- relations = []
183
-
184
- # Transform all sentences to kb-schema sentences
185
- for source_sentence in source_document["sentences"]:
186
- text = source_sentence["text"]
187
- passages.append(
188
- {
189
- "id": source_sentence["sentence_id"],
190
- "text": [text],
191
- "offsets": [[sentence_offset + 0, sentence_offset + len(text)]],
192
- "type": "",
193
- }
194
- )
195
-
196
- # Transform source-schema entities to kb-schema entities
197
- for source_entity in source_sentence["entities"]:
198
- db_name = self.ENTITY_TYPE_TO_DB_NAME[source_entity["type"]]
199
-
200
- entity_offset = source_entity["offset"]
201
- entity_offset = [sentence_offset + entity_offset[0], sentence_offset + entity_offset[1]]
202
-
203
- entities.append(
204
- {
205
- "id": source_entity["entity_id"],
206
- "type": source_entity["type"],
207
- "text": [source_entity["text"]],
208
- "offsets": [entity_offset],
209
- "normalized": [
210
- {"db_name": db_name, "db_id": db_id} for db_id in source_entity["entity_orig_id"]
211
- ],
212
- }
213
- )
214
-
215
- # Transform source-schema pairs to kb-schema relations
216
- for source_pair in source_sentence["pairs"]:
217
- # Ignore pairs that are annotated to be not in a relationship!
218
- if not source_pair["interaction"]:
219
- continue
220
-
221
- relations.append(
222
- {
223
- "id": source_pair["pair_id"],
224
- "type": "compound-protein-interaction",
225
- "arg1_id": source_pair["e1"],
226
- "arg2_id": source_pair["e2"],
227
- "normalized": [],
228
- }
229
- )
230
-
231
- sentence_offset += len(text) + 1
232
-
233
- kb_document = {
234
- "id": source_document["document_id"],
235
- "document_id": source_document["document_orig_id"],
236
- "passages": passages,
237
- "entities": entities,
238
- "relations": relations,
239
- "events": [],
240
- "coreferences": [],
241
- }
242
-
243
- yield source_document["document_id"], kb_document
244
-
245
- def _read_source_examples(self, input_file: Path) -> Iterator[Tuple[str, Dict]]:
246
- """
247
- Reads all instances of the given input file and parses them into the source format.
248
- """
249
- root = ET.parse(input_file)
250
- for document in root.iter("document"):
251
- sentences = []
252
- for sentence in document.iter("sentence"):
253
- entities = []
254
- for entity in sentence.iter("entity"):
255
- char_offsets = entity.attrib["charOffset"].split("-")
256
- start, end = int(char_offsets[0]), int(char_offsets[1])
257
-
258
- entities.append(
259
- {
260
- "entity_id": entity.attrib["id"],
261
- "entity_orig_id": entity.attrib["origId"].split(","),
262
- "type": entity.attrib["type"],
263
- "text": entity.attrib["text"],
264
- "offset": [start, end],
265
- }
266
- )
267
-
268
- pairs = []
269
- for pair in sentence.iter("pair"):
270
- pairs.append(
271
- {
272
- "pair_id": pair.attrib["id"],
273
- "e1": pair.attrib["e1"],
274
- "e2": pair.attrib["e2"],
275
- "interaction": pair.attrib["interaction"].lower() == "true",
276
- }
277
- )
278
-
279
- sentences.append(
280
- {
281
- "sentence_id": sentence.attrib["id"],
282
- "sentence_orig_id": sentence.attrib["origId"],
283
- "text": sentence.attrib["text"],
284
- "entities": entities,
285
- "pairs": pairs,
286
- }
287
- )
288
-
289
- document_dict = {
290
- "document_id": document.attrib["id"],
291
- "document_orig_id": document.attrib["origId"],
292
- "sentences": sentences,
293
- }
294
-
295
- yield document.attrib["id"], document_dict
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cpi_bigbio_kb/cpi-train.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:05286f477e525d0782aa1e05c83c66b8886ffc7b0135f7fad3cd710dc8eaaa74
3
+ size 831944
cpi_iv_source/cpi-train.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:760fea3954edfa147d4bca434d5bffff0b47ef1f84472a802020aa7928f9edfe
3
+ size 405525
cpi_niv_source/cpi-train.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:760fea3954edfa147d4bca434d5bffff0b47ef1f84472a802020aa7928f9edfe
3
+ size 405525
cpi_source/cpi-train.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5a8afe948e01554be3cda9547250767f1aff53f28b232272dac8a6c9d1cdd39a
3
+ size 853376