|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
""" |
|
The DrugProt corpus consists of a) expert-labelled chemical and gene mentions, and (b) all binary relationships |
|
between them corresponding to a specific set of biologically relevant relation types. The corpus was introduced |
|
in context of the BioCreative VII Track 1 (Text mining drug and chemical-protein interactions). |
|
|
|
For further information see: |
|
https://biocreative.bioinformatics.udel.edu/tasks/biocreative-vii/track-1/ |
|
""" |
|
import collections |
|
from pathlib import Path |
|
from typing import Dict, Iterator, Tuple, Optional |
|
|
|
import datasets |
|
|
|
from .bigbiohub import kb_features |
|
from .bigbiohub import BigBioConfig |
|
from .bigbiohub import Tasks |
|
|
|
_LANGUAGES = ['English'] |
|
_PUBMED = True |
|
_LOCAL = False |
|
_CITATION = """\ |
|
@inproceedings{miranda2021overview, |
|
title={Overview of DrugProt BioCreative VII track: quality evaluation and large scale text mining of \ |
|
drug-gene/protein relations}, |
|
author={Miranda, Antonio and Mehryary, Farrokh and Luoma, Jouni and Pyysalo, Sampo and Valencia, Alfonso \ |
|
and Krallinger, Martin}, |
|
booktitle={Proceedings of the seventh BioCreative challenge evaluation workshop}, |
|
year={2021} |
|
} |
|
""" |
|
|
|
_DATASETNAME = "drugprot" |
|
_DISPLAYNAME = "DrugProt" |
|
|
|
|
|
_DESCRIPTION = """\ |
|
The DrugProt corpus consists of a) expert-labelled chemical and gene mentions, and (b) all binary relationships \ |
|
between them corresponding to a specific set of biologically relevant relation types. |
|
""" |
|
|
|
_HOMEPAGE = "https://biocreative.bioinformatics.udel.edu/tasks/biocreative-vii/track-1/" |
|
|
|
_LICENSE = 'Creative Commons Attribution 4.0 International' |
|
|
|
_URLS = {_DATASETNAME: "https://zenodo.org/record/5119892/files/drugprot-training-development-test-background.zip?download=1"} |
|
|
|
_SUPPORTED_TASKS = [Tasks.NAMED_ENTITY_RECOGNITION, Tasks.RELATION_EXTRACTION] |
|
|
|
_SOURCE_VERSION = "1.0.2" |
|
_BIGBIO_VERSION = "1.0.0" |
|
|
|
|
|
class DrugProtDataset(datasets.GeneratorBasedBuilder): |
|
""" |
|
The DrugProt corpus consists of a) expert-labelled chemical and gene mentions, and \ |
|
(b) all binary relationships between them. |
|
""" |
|
|
|
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION) |
|
BIGBIO_VERSION = datasets.Version(_BIGBIO_VERSION) |
|
|
|
BUILDER_CONFIGS = [ |
|
BigBioConfig( |
|
name="drugprot_source", |
|
version=SOURCE_VERSION, |
|
description="DrugProt source schema", |
|
schema="source", |
|
subset_id="drugprot", |
|
), |
|
BigBioConfig( |
|
name="drugprot_bigbio_kb", |
|
version=BIGBIO_VERSION, |
|
description="DrugProt BigBio schema", |
|
schema="bigbio_kb", |
|
subset_id="drugprot", |
|
), |
|
] |
|
|
|
DEFAULT_CONFIG_NAME = "drugprot_source" |
|
|
|
def _info(self): |
|
if self.config.schema == "source": |
|
features = datasets.Features( |
|
{ |
|
"document_id": datasets.Value("string"), |
|
"title": datasets.Value("string"), |
|
"abstract": datasets.Value("string"), |
|
"text": datasets.Value("string"), |
|
"entities": [ |
|
{ |
|
"id": datasets.Value("string"), |
|
"type": datasets.Value("string"), |
|
"text": datasets.Value("string"), |
|
"offset": datasets.Sequence(datasets.Value("int32")), |
|
} |
|
], |
|
"relations": [ |
|
{ |
|
"id": datasets.Value("string"), |
|
"type": datasets.Value("string"), |
|
"arg1_id": datasets.Value("string"), |
|
"arg2_id": datasets.Value("string"), |
|
} |
|
], |
|
} |
|
) |
|
|
|
elif self.config.schema == "bigbio_kb": |
|
features = kb_features |
|
|
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=features, |
|
homepage=_HOMEPAGE, |
|
license=str(_LICENSE), |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
urls = _URLS[_DATASETNAME] |
|
data_dir = Path(dl_manager.download_and_extract(urls)) |
|
data_dir = data_dir / "drugprot-gs-training-development" |
|
|
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={ |
|
"abstracts_file": data_dir / "training" / "drugprot_training_abstracs.tsv", |
|
"entities_file": data_dir / "training" / "drugprot_training_entities.tsv", |
|
"relations_file": data_dir / "training" / "drugprot_training_relations.tsv", |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.VALIDATION, |
|
gen_kwargs={ |
|
"abstracts_file": data_dir / "development" / "drugprot_development_abstracs.tsv", |
|
"entities_file": data_dir / "development" / "drugprot_development_entities.tsv", |
|
"relations_file": data_dir / "development" / "drugprot_development_relations.tsv", |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split("test_background"), |
|
gen_kwargs={ |
|
"abstracts_file": data_dir / "test-background" / "test_background_abstracts.tsv", |
|
"entities_file": data_dir / "test-background" / "test_background_entities.tsv", |
|
"relations_file": None, |
|
}, |
|
), |
|
] |
|
|
|
def _generate_examples(self, **kwargs) -> Iterator[Tuple[str, Dict]]: |
|
if self.config.name == "drugprot_source": |
|
documents = self._read_source_examples(**kwargs) |
|
for document_id, document in documents.items(): |
|
yield document_id, document |
|
|
|
elif self.config.name == "drugprot_bigbio_kb": |
|
documents = self._read_source_examples(**kwargs) |
|
for document_id, document in documents.items(): |
|
yield document_id, self._transform_source_to_kb(document) |
|
|
|
def _read_source_examples(self, abstracts_file: Path, entities_file: Path, relations_file: Optional[Path]) -> Dict: |
|
""" """ |
|
|
|
document_to_entities = collections.defaultdict(list) |
|
for line in entities_file.read_text().splitlines(): |
|
columns = line.split("\t") |
|
document_id = columns[0] |
|
|
|
document_to_entities[document_id].append( |
|
{ |
|
"id": document_id + "_" + columns[1], |
|
"type": columns[2], |
|
"offset": [columns[3], columns[4]], |
|
"text": columns[5], |
|
} |
|
) |
|
|
|
document_to_relations = collections.defaultdict(list) |
|
|
|
if relations_file is not None: |
|
for line in relations_file.read_text().splitlines(): |
|
columns = line.split("\t") |
|
document_id = columns[0] |
|
|
|
document_relations = document_to_relations[document_id] |
|
|
|
document_relations.append( |
|
{ |
|
"id": document_id + "_" + str(len(document_relations)), |
|
"type": columns[1], |
|
"arg1_id": document_id + "_" + columns[2][5:], |
|
"arg2_id": document_id + "_" + columns[3][5:], |
|
} |
|
) |
|
|
|
document_to_source = {} |
|
for line in abstracts_file.read_text().splitlines(): |
|
document_id, title, abstract = line.split("\t") |
|
|
|
document_to_source[document_id] = { |
|
"document_id": document_id, |
|
"title": title, |
|
"abstract": abstract, |
|
"text": " ".join([title, abstract]), |
|
"entities": document_to_entities[document_id], |
|
"relations": document_to_relations[document_id], |
|
} |
|
|
|
return document_to_source |
|
|
|
def _transform_source_to_kb(self, source_document: Dict) -> Dict: |
|
document_id = source_document["document_id"] |
|
|
|
offset = 0 |
|
passages = [] |
|
for text_field in ["title", "abstract"]: |
|
text = source_document[text_field] |
|
passages.append( |
|
{ |
|
"id": document_id + "_" + text_field, |
|
"type": text_field, |
|
"text": [text], |
|
"offsets": [[offset, offset + len(text)]], |
|
} |
|
) |
|
offset += len(text) + 1 |
|
|
|
entities = [ |
|
{ |
|
"id": entity["id"], |
|
"type": entity["type"], |
|
"text": [entity["text"]], |
|
"offsets": [entity["offset"]], |
|
"normalized": [], |
|
} |
|
for entity in source_document["entities"] |
|
] |
|
|
|
relations = [ |
|
{ |
|
"id": relation["id"], |
|
"type": relation["type"], |
|
"arg1_id": relation["arg1_id"], |
|
"arg2_id": relation["arg2_id"], |
|
"normalized": [], |
|
} |
|
for relation in source_document["relations"] |
|
] |
|
|
|
return { |
|
"id": document_id, |
|
"document_id": document_id, |
|
"passages": passages, |
|
"entities": entities, |
|
"relations": relations, |
|
"events": [], |
|
"coreferences": [], |
|
} |
|
|