Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
gad / gad.py
gabrielaltay's picture
keep zip file name from google drive
664a39b
raw
history blame
5.98 kB
from pathlib import Path
from typing import List
import datasets
import pandas as pd
from .bigbiohub import text_features
from .bigbiohub import BigBioConfig
from .bigbiohub import Tasks
_SOURCE_VIEW_NAME = "source"
_UNIFIED_VIEW_NAME = "bigbio"
_LANGUAGES = ["English"]
_PUBMED = True
_LOCAL = False
_CITATION = """\
@article{Bravo2015,
doi = {10.1186/s12859-015-0472-9},
url = {https://doi.org/10.1186/s12859-015-0472-9},
year = {2015},
month = feb,
publisher = {Springer Science and Business Media {LLC}},
volume = {16},
number = {1},
author = {{\`{A}}lex Bravo and Janet Pi{\~{n}}ero and N{\'{u}}ria Queralt-Rosinach and Michael Rautschka and Laura I Furlong},
title = {Extraction of relations between genes and diseases from text and large-scale data analysis: implications for translational research},
journal = {{BMC} Bioinformatics}
}
"""
_DESCRIPTION = """\
A corpus identifying associations between genes and diseases by a semi-automatic
annotation procedure based on the Genetic Association Database
"""
_DATASETNAME = "gad"
_DISPLAYNAME = "GAD"
_HOMEPAGE = "https://github.com/dmis-lab/biobert" # This data source is used by the BLURB benchmark
_LICENSE = "CC_BY_4p0"
_SUPPORTED_TASKS = [Tasks.TEXT_CLASSIFICATION]
_SOURCE_VERSION = "1.0.0"
_BIGBIO_VERSION = "1.0.0"
class GAD(datasets.GeneratorBasedBuilder):
"""GAD is a weakly labeled dataset for Entity Relations (REL) task which is treated as a sentence classification task."""
BUILDER_CONFIGS = [
# 10-fold source schema
BigBioConfig(
name=f"gad_fold{i}_source",
version=datasets.Version(_SOURCE_VERSION),
description="GAD source schema",
schema="source",
subset_id=f"gad_fold{i}",
)
for i in range(10)
] + [
# 10-fold bigbio schema
BigBioConfig(
name=f"gad_fold{i}_bigbio_text",
version=datasets.Version(_BIGBIO_VERSION),
description="GAD BigBio schema",
schema="bigbio_text",
subset_id=f"gad_fold{i}",
)
for i in range(10)
]
# BLURB Benchmark config https://microsoft.github.io/BLURB/
BUILDER_CONFIGS.append(
BigBioConfig(
name=f"gad_blurb_bigbio_text",
version=datasets.Version(_BIGBIO_VERSION),
description=f"GAD BLURB benchmark in simplified BigBio schema",
schema="bigbio_text",
subset_id=f"gad_blurb",
)
)
DEFAULT_CONFIG_NAME = "gad_fold0_source"
def _info(self):
if self.config.schema == "source":
features = datasets.Features(
{
"index": datasets.Value("string"),
"sentence": datasets.Value("string"),
"label": datasets.Value("int32"),
}
)
elif self.config.schema == "bigbio_text":
features = text_features
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=features,
homepage=_HOMEPAGE,
license=str(_LICENSE),
citation=_CITATION,
)
def _split_generators(
self, dl_manager: datasets.DownloadManager
) -> List[datasets.SplitGenerator]:
data_dir = Path(dl_manager.download_and_extract("data/REdata.zip"))
if "blurb" in self.config.name:
data_files = {
"train": data_dir / "GAD" / "blurb" / "train.tsv",
"validation": data_dir / "GAD" / "blurb" / "dev.tsv",
"test": data_dir / "GAD" / "blurb" / "test.tsv",
}
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={"filepath": data_files["train"]},
),
datasets.SplitGenerator(
name=datasets.Split.VALIDATION,
gen_kwargs={"filepath": data_files["validation"]},
),
datasets.SplitGenerator(
name=datasets.Split.TEST,
gen_kwargs={"filepath": data_files["test"]},
),
]
else:
fold_id = int(self.config.subset_id.split("_fold")[1][0]) + 1
data_files = {
"train": data_dir / "GAD" / str(fold_id) / "train.tsv",
"test": data_dir / "GAD" / str(fold_id) / "test.tsv",
}
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={"filepath": data_files["train"]},
),
datasets.SplitGenerator(
name=datasets.Split.TEST,
gen_kwargs={"filepath": data_files["test"]},
),
]
def _generate_examples(self, filepath: Path):
# train files in non-blurb splits don't have headers for some reason
if "train.tsv" in str(filepath) and "blurb" not in self.config.name:
df = pd.read_csv(filepath, sep="\t", header=None).reset_index()
else:
df = pd.read_csv(filepath, sep="\t")
df.columns = ["id", "sentence", "label"]
if self.config.schema == "source":
for id, row in enumerate(df.itertuples()):
ex = {
"index": row.id,
"sentence": row.sentence,
"label": int(row.label),
}
yield id, ex
elif self.config.schema == "bigbio_text":
for id, row in enumerate(df.itertuples()):
ex = {
"id": id,
"document_id": row.id,
"text": row.sentence,
"labels": [str(row.label)],
}
yield id, ex
else:
raise ValueError(f"Invalid config: {self.config.name}")