gabrielaltay
commited on
Commit
·
3d90d4b
1
Parent(s):
e5d30dc
initial commit
Browse files- README.md +35 -0
- bigbiohub.py +153 -0
- gad.py +211 -0
README.md
CHANGED
@@ -1,3 +1,38 @@
|
|
1 |
---
|
|
|
2 |
license: cc-by-4.0
|
|
|
|
|
3 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
+
language: en
|
3 |
license: cc-by-4.0
|
4 |
+
multilinguality: momolingual
|
5 |
+
pretty_name: GAD
|
6 |
---
|
7 |
+
|
8 |
+
|
9 |
+
# Dataset Card for GAD
|
10 |
+
|
11 |
+
## Dataset Description
|
12 |
+
|
13 |
+
- **Homepage:** "https://github.com/dmis-lab/biobert" # This data source is used by the BLURB benchmark
|
14 |
+
- **Pubmed:** True
|
15 |
+
- **Public:** True
|
16 |
+
- **Tasks:** Text Classification
|
17 |
+
|
18 |
+
|
19 |
+
A corpus identifying associations between genes and diseases by a semi-automatic
|
20 |
+
annotation procedure based on the Genetic Association Database
|
21 |
+
|
22 |
+
|
23 |
+
## Citation Information
|
24 |
+
|
25 |
+
```
|
26 |
+
@article{Bravo2015,
|
27 |
+
doi = {10.1186/s12859-015-0472-9},
|
28 |
+
url = {https://doi.org/10.1186/s12859-015-0472-9},
|
29 |
+
year = {2015},
|
30 |
+
month = feb,
|
31 |
+
publisher = {Springer Science and Business Media {LLC}},
|
32 |
+
volume = {16},
|
33 |
+
number = {1},
|
34 |
+
author = {{\`{A}}lex Bravo and Janet Pi{\~{n}}ero and N{\'{u}}ria Queralt-Rosinach and Michael Rautschka and Laura I Furlong},
|
35 |
+
title = {Extraction of relations between genes and diseases from text and large-scale data analysis: implications for translational research},
|
36 |
+
journal = {{BMC} Bioinformatics}
|
37 |
+
}
|
38 |
+
```
|
bigbiohub.py
ADDED
@@ -0,0 +1,153 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from dataclasses import dataclass
|
2 |
+
from enum import Enum
|
3 |
+
import datasets
|
4 |
+
from types import SimpleNamespace
|
5 |
+
|
6 |
+
|
7 |
+
BigBioValues = SimpleNamespace(NULL="<BB_NULL_STR>")
|
8 |
+
|
9 |
+
|
10 |
+
@dataclass
|
11 |
+
class BigBioConfig(datasets.BuilderConfig):
|
12 |
+
"""BuilderConfig for BigBio."""
|
13 |
+
|
14 |
+
name: str = None
|
15 |
+
version: datasets.Version = None
|
16 |
+
description: str = None
|
17 |
+
schema: str = None
|
18 |
+
subset_id: str = None
|
19 |
+
|
20 |
+
|
21 |
+
class Tasks(Enum):
|
22 |
+
NAMED_ENTITY_RECOGNITION = "NER"
|
23 |
+
NAMED_ENTITY_DISAMBIGUATION = "NED"
|
24 |
+
EVENT_EXTRACTION = "EE"
|
25 |
+
RELATION_EXTRACTION = "RE"
|
26 |
+
COREFERENCE_RESOLUTION = "COREF"
|
27 |
+
QUESTION_ANSWERING = "QA"
|
28 |
+
TEXTUAL_ENTAILMENT = "TE"
|
29 |
+
SEMANTIC_SIMILARITY = "STS"
|
30 |
+
TEXT_PAIRS_CLASSIFICATION = "TXT2CLASS"
|
31 |
+
PARAPHRASING = "PARA"
|
32 |
+
TRANSLATION = "TRANSL"
|
33 |
+
SUMMARIZATION = "SUM"
|
34 |
+
TEXT_CLASSIFICATION = "TXTCLASS"
|
35 |
+
|
36 |
+
|
37 |
+
entailment_features = datasets.Features(
|
38 |
+
{
|
39 |
+
"id": datasets.Value("string"),
|
40 |
+
"premise": datasets.Value("string"),
|
41 |
+
"hypothesis": datasets.Value("string"),
|
42 |
+
"label": datasets.Value("string"),
|
43 |
+
}
|
44 |
+
)
|
45 |
+
|
46 |
+
pairs_features = datasets.Features(
|
47 |
+
{
|
48 |
+
"id": datasets.Value("string"),
|
49 |
+
"document_id": datasets.Value("string"),
|
50 |
+
"text_1": datasets.Value("string"),
|
51 |
+
"text_2": datasets.Value("string"),
|
52 |
+
"label": datasets.Value("string"),
|
53 |
+
}
|
54 |
+
)
|
55 |
+
|
56 |
+
qa_features = datasets.Features(
|
57 |
+
{
|
58 |
+
"id": datasets.Value("string"),
|
59 |
+
"question_id": datasets.Value("string"),
|
60 |
+
"document_id": datasets.Value("string"),
|
61 |
+
"question": datasets.Value("string"),
|
62 |
+
"type": datasets.Value("string"),
|
63 |
+
"choices": [datasets.Value("string")],
|
64 |
+
"context": datasets.Value("string"),
|
65 |
+
"answer": datasets.Sequence(datasets.Value("string")),
|
66 |
+
}
|
67 |
+
)
|
68 |
+
|
69 |
+
text_features = datasets.Features(
|
70 |
+
{
|
71 |
+
"id": datasets.Value("string"),
|
72 |
+
"document_id": datasets.Value("string"),
|
73 |
+
"text": datasets.Value("string"),
|
74 |
+
"labels": [datasets.Value("string")],
|
75 |
+
}
|
76 |
+
)
|
77 |
+
|
78 |
+
text2text_features = datasets.Features(
|
79 |
+
{
|
80 |
+
"id": datasets.Value("string"),
|
81 |
+
"document_id": datasets.Value("string"),
|
82 |
+
"text_1": datasets.Value("string"),
|
83 |
+
"text_2": datasets.Value("string"),
|
84 |
+
"text_1_name": datasets.Value("string"),
|
85 |
+
"text_2_name": datasets.Value("string"),
|
86 |
+
}
|
87 |
+
)
|
88 |
+
|
89 |
+
kb_features = datasets.Features(
|
90 |
+
{
|
91 |
+
"id": datasets.Value("string"),
|
92 |
+
"document_id": datasets.Value("string"),
|
93 |
+
"passages": [
|
94 |
+
{
|
95 |
+
"id": datasets.Value("string"),
|
96 |
+
"type": datasets.Value("string"),
|
97 |
+
"text": datasets.Sequence(datasets.Value("string")),
|
98 |
+
"offsets": datasets.Sequence([datasets.Value("int32")]),
|
99 |
+
}
|
100 |
+
],
|
101 |
+
"entities": [
|
102 |
+
{
|
103 |
+
"id": datasets.Value("string"),
|
104 |
+
"type": datasets.Value("string"),
|
105 |
+
"text": datasets.Sequence(datasets.Value("string")),
|
106 |
+
"offsets": datasets.Sequence([datasets.Value("int32")]),
|
107 |
+
"normalized": [
|
108 |
+
{
|
109 |
+
"db_name": datasets.Value("string"),
|
110 |
+
"db_id": datasets.Value("string"),
|
111 |
+
}
|
112 |
+
],
|
113 |
+
}
|
114 |
+
],
|
115 |
+
"events": [
|
116 |
+
{
|
117 |
+
"id": datasets.Value("string"),
|
118 |
+
"type": datasets.Value("string"),
|
119 |
+
# refers to the text_bound_annotation of the trigger
|
120 |
+
"trigger": {
|
121 |
+
"text": datasets.Sequence(datasets.Value("string")),
|
122 |
+
"offsets": datasets.Sequence([datasets.Value("int32")]),
|
123 |
+
},
|
124 |
+
"arguments": [
|
125 |
+
{
|
126 |
+
"role": datasets.Value("string"),
|
127 |
+
"ref_id": datasets.Value("string"),
|
128 |
+
}
|
129 |
+
],
|
130 |
+
}
|
131 |
+
],
|
132 |
+
"coreferences": [
|
133 |
+
{
|
134 |
+
"id": datasets.Value("string"),
|
135 |
+
"entity_ids": datasets.Sequence(datasets.Value("string")),
|
136 |
+
}
|
137 |
+
],
|
138 |
+
"relations": [
|
139 |
+
{
|
140 |
+
"id": datasets.Value("string"),
|
141 |
+
"type": datasets.Value("string"),
|
142 |
+
"arg1_id": datasets.Value("string"),
|
143 |
+
"arg2_id": datasets.Value("string"),
|
144 |
+
"normalized": [
|
145 |
+
{
|
146 |
+
"db_name": datasets.Value("string"),
|
147 |
+
"db_id": datasets.Value("string"),
|
148 |
+
}
|
149 |
+
],
|
150 |
+
}
|
151 |
+
],
|
152 |
+
}
|
153 |
+
)
|
gad.py
ADDED
@@ -0,0 +1,211 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from pathlib import Path
|
2 |
+
from typing import List
|
3 |
+
|
4 |
+
import datasets
|
5 |
+
import pandas as pd
|
6 |
+
|
7 |
+
from .bigbiohub import text_features
|
8 |
+
from .bigbiohub import BigBioConfig
|
9 |
+
from .bigbiohub import Tasks
|
10 |
+
|
11 |
+
|
12 |
+
_SOURCE_VIEW_NAME = "source"
|
13 |
+
_UNIFIED_VIEW_NAME = "bigbio"
|
14 |
+
|
15 |
+
_LANGUAGES = ["English"]
|
16 |
+
_PUBMED = True
|
17 |
+
_LOCAL = False
|
18 |
+
_CITATION = """\
|
19 |
+
@article{Bravo2015,
|
20 |
+
doi = {10.1186/s12859-015-0472-9},
|
21 |
+
url = {https://doi.org/10.1186/s12859-015-0472-9},
|
22 |
+
year = {2015},
|
23 |
+
month = feb,
|
24 |
+
publisher = {Springer Science and Business Media {LLC}},
|
25 |
+
volume = {16},
|
26 |
+
number = {1},
|
27 |
+
author = {{\`{A}}lex Bravo and Janet Pi{\~{n}}ero and N{\'{u}}ria Queralt-Rosinach and Michael Rautschka and Laura I Furlong},
|
28 |
+
title = {Extraction of relations between genes and diseases from text and large-scale data analysis: implications for translational research},
|
29 |
+
journal = {{BMC} Bioinformatics}
|
30 |
+
}
|
31 |
+
"""
|
32 |
+
|
33 |
+
_DESCRIPTION = """\
|
34 |
+
A corpus identifying associations between genes and diseases by a semi-automatic
|
35 |
+
annotation procedure based on the Genetic Association Database
|
36 |
+
"""
|
37 |
+
|
38 |
+
_DATASETNAME = "gad"
|
39 |
+
_DISPLAYNAME = "GAD"
|
40 |
+
|
41 |
+
_HOMEPAGE = "https://github.com/dmis-lab/biobert" # This data source is used by the BLURB benchmark
|
42 |
+
|
43 |
+
_LICENSE = "CC_BY_4p0"
|
44 |
+
|
45 |
+
_URLs = {
|
46 |
+
"source": "https://drive.google.com/uc?export=download&id=1-jDKGcXREb2X9xTFnuiJ36PvsqoyHWcw",
|
47 |
+
"bigbio_text": "https://drive.google.com/uc?export=download&id=1-jDKGcXREb2X9xTFnuiJ36PvsqoyHWcw",
|
48 |
+
}
|
49 |
+
|
50 |
+
_SUPPORTED_TASKS = [Tasks.TEXT_CLASSIFICATION]
|
51 |
+
|
52 |
+
_SOURCE_VERSION = "1.0.0"
|
53 |
+
_BIGBIO_VERSION = "1.0.0"
|
54 |
+
|
55 |
+
|
56 |
+
class GAD(datasets.GeneratorBasedBuilder):
|
57 |
+
"""GAD is a weakly labeled dataset for Entity Relations (REL) task which is treated as a sentence classification task."""
|
58 |
+
|
59 |
+
BUILDER_CONFIGS = [
|
60 |
+
# 10-fold source schema
|
61 |
+
BigBioConfig(
|
62 |
+
name=f"gad_fold{i}_source",
|
63 |
+
version=datasets.Version(_SOURCE_VERSION),
|
64 |
+
description="GAD source schema",
|
65 |
+
schema="source",
|
66 |
+
subset_id=f"gad_fold{i}",
|
67 |
+
)
|
68 |
+
for i in range(10)
|
69 |
+
] + [
|
70 |
+
# 10-fold bigbio schema
|
71 |
+
BigBioConfig(
|
72 |
+
name=f"gad_fold{i}_bigbio_text",
|
73 |
+
version=datasets.Version(_BIGBIO_VERSION),
|
74 |
+
description="GAD BigBio schema",
|
75 |
+
schema="bigbio_text",
|
76 |
+
subset_id=f"gad_fold{i}",
|
77 |
+
)
|
78 |
+
for i in range(10)
|
79 |
+
]
|
80 |
+
|
81 |
+
# BLURB Benchmark config https://microsoft.github.io/BLURB/
|
82 |
+
BUILDER_CONFIGS.append(
|
83 |
+
BigBioConfig(
|
84 |
+
name=f"gad_blurb_bigbio_text",
|
85 |
+
version=datasets.Version(_BIGBIO_VERSION),
|
86 |
+
description=f"GAD BLURB benchmark in simplified BigBio schema",
|
87 |
+
schema="bigbio_text",
|
88 |
+
subset_id=f"gad_blurb",
|
89 |
+
)
|
90 |
+
)
|
91 |
+
|
92 |
+
DEFAULT_CONFIG_NAME = "gad_fold0_source"
|
93 |
+
|
94 |
+
def _info(self):
|
95 |
+
if self.config.schema == "source":
|
96 |
+
features = datasets.Features(
|
97 |
+
{
|
98 |
+
"index": datasets.Value("string"),
|
99 |
+
"sentence": datasets.Value("string"),
|
100 |
+
"label": datasets.Value("int32"),
|
101 |
+
}
|
102 |
+
)
|
103 |
+
elif self.config.schema == "bigbio_text":
|
104 |
+
features = text_features
|
105 |
+
|
106 |
+
return datasets.DatasetInfo(
|
107 |
+
description=_DESCRIPTION,
|
108 |
+
features=features,
|
109 |
+
homepage=_HOMEPAGE,
|
110 |
+
license=str(_LICENSE),
|
111 |
+
citation=_CITATION,
|
112 |
+
)
|
113 |
+
|
114 |
+
def _split_generators(
|
115 |
+
self, dl_manager: datasets.DownloadManager
|
116 |
+
) -> List[datasets.SplitGenerator]:
|
117 |
+
|
118 |
+
if "blurb" in self.config.name:
|
119 |
+
return self._blurb_split_generator(dl_manager)
|
120 |
+
|
121 |
+
fold_id = int(self.config.subset_id.split("_fold")[1][0]) + 1
|
122 |
+
|
123 |
+
my_urls = _URLs[self.config.schema]
|
124 |
+
data_dir = Path(dl_manager.download_and_extract(my_urls))
|
125 |
+
data_files = {
|
126 |
+
"train": data_dir / "GAD" / str(fold_id) / "train.tsv",
|
127 |
+
"test": data_dir / "GAD" / str(fold_id) / "test.tsv",
|
128 |
+
}
|
129 |
+
|
130 |
+
return [
|
131 |
+
datasets.SplitGenerator(
|
132 |
+
name=datasets.Split.TRAIN,
|
133 |
+
gen_kwargs={"filepath": data_files["train"]},
|
134 |
+
),
|
135 |
+
datasets.SplitGenerator(
|
136 |
+
name=datasets.Split.TEST,
|
137 |
+
gen_kwargs={"filepath": data_files["test"]},
|
138 |
+
),
|
139 |
+
]
|
140 |
+
|
141 |
+
def _generate_examples(self, filepath: Path):
|
142 |
+
if "train.tsv" in str(filepath):
|
143 |
+
df = pd.read_csv(filepath, sep="\t", header=None).reset_index()
|
144 |
+
else:
|
145 |
+
df = pd.read_csv(filepath, sep="\t")
|
146 |
+
df.columns = ["id", "sentence", "label"]
|
147 |
+
|
148 |
+
if self.config.schema == "source":
|
149 |
+
for id, row in enumerate(df.itertuples()):
|
150 |
+
ex = {
|
151 |
+
"index": row.id,
|
152 |
+
"sentence": row.sentence,
|
153 |
+
"label": int(row.label),
|
154 |
+
}
|
155 |
+
yield id, ex
|
156 |
+
elif self.config.schema == "bigbio_text":
|
157 |
+
for id, row in enumerate(df.itertuples()):
|
158 |
+
ex = {
|
159 |
+
"id": id,
|
160 |
+
"document_id": row.id,
|
161 |
+
"text": row.sentence,
|
162 |
+
"labels": [str(row.label)],
|
163 |
+
}
|
164 |
+
yield id, ex
|
165 |
+
else:
|
166 |
+
raise ValueError(f"Invalid config: {self.config.name}")
|
167 |
+
|
168 |
+
def _blurb_split_generator(self, dl_manager: datasets.DownloadManager):
|
169 |
+
"""Creates train/dev/test for BLURB split"""
|
170 |
+
|
171 |
+
my_urls = _URLs[self.config.schema]
|
172 |
+
data_dir = Path(dl_manager.download_and_extract(my_urls))
|
173 |
+
data_files = {
|
174 |
+
"train": data_dir / "GAD" / str(1) / "train.tsv",
|
175 |
+
"test": data_dir / "GAD" / str(1) / "test.tsv",
|
176 |
+
}
|
177 |
+
|
178 |
+
root_path = data_files["train"].parents[1]
|
179 |
+
# Save the train + validation sets accordingly
|
180 |
+
with open(data_files["train"], "r") as f:
|
181 |
+
train_data = f.readlines()
|
182 |
+
|
183 |
+
data = {}
|
184 |
+
data["train"], data["dev"] = train_data[:4261], train_data[4261:]
|
185 |
+
|
186 |
+
for batch in ["train", "dev"]:
|
187 |
+
fname = batch + "_blurb.tsv"
|
188 |
+
fname = root_path / fname
|
189 |
+
|
190 |
+
with open(fname, "w") as f:
|
191 |
+
f.write("index\tsentence\tlabel\n")
|
192 |
+
for idx, line in enumerate(data[batch]):
|
193 |
+
f.write(f"{idx}\t{line}")
|
194 |
+
|
195 |
+
train_fpath = root_path / "train_blurb.tsv"
|
196 |
+
dev_fpath = root_path / "dev_blurb.tsv"
|
197 |
+
|
198 |
+
return [
|
199 |
+
datasets.SplitGenerator(
|
200 |
+
name=datasets.Split.TRAIN,
|
201 |
+
gen_kwargs={"filepath": train_fpath},
|
202 |
+
),
|
203 |
+
datasets.SplitGenerator(
|
204 |
+
name=datasets.Split.VALIDATION,
|
205 |
+
gen_kwargs={"filepath": dev_fpath},
|
206 |
+
),
|
207 |
+
datasets.SplitGenerator(
|
208 |
+
name=datasets.Split.TEST,
|
209 |
+
gen_kwargs={"filepath": data_files["test"]},
|
210 |
+
),
|
211 |
+
]
|