|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
""" |
|
The extraction of various relations stated to hold between biomolecular entities is one of the most frequently |
|
addressed information extraction tasks in domain studies. Typical relation extraction targets involve protein-protein |
|
interactions or gene regulatory relations. However, in the GENIA corpus, such associations involving change in the |
|
state or properties of biomolecules are captured in the event annotation. |
|
|
|
The GENIA corpus relation annotation aims to complement the event annotation of the corpus by capturing (primarily) |
|
static relations, relations such as part-of that hold between entities without (necessarily) involving change. |
|
""" |
|
|
|
import os |
|
from pathlib import Path |
|
from typing import Dict, List, Tuple |
|
|
|
import datasets |
|
|
|
from .bigbiohub import kb_features |
|
from .bigbiohub import BigBioConfig |
|
from .bigbiohub import Tasks |
|
from .bigbiohub import parse_brat_file |
|
from .bigbiohub import brat_parse_to_bigbio_kb |
|
|
|
|
|
_LANGUAGES = ['English'] |
|
_PUBMED = True |
|
_LOCAL = False |
|
_CITATION = """\ |
|
@inproceedings{pyysalo-etal-2009-static, |
|
title = "Static Relations: a Piece in the Biomedical Information Extraction Puzzle", |
|
author = "Pyysalo, Sampo and |
|
Ohta, Tomoko and |
|
Kim, Jin-Dong and |
|
Tsujii, Jun{'}ichi", |
|
booktitle = "Proceedings of the {B}io{NLP} 2009 Workshop", |
|
month = jun, |
|
year = "2009", |
|
address = "Boulder, Colorado", |
|
publisher = "Association for Computational Linguistics", |
|
url = "https://aclanthology.org/W09-1301", |
|
pages = "1--9", |
|
} |
|
|
|
@article{article, |
|
author = {Ohta, Tomoko and Pyysalo, Sampo and Kim, Jin-Dong and Tsujii, Jun'ichi}, |
|
year = {2010}, |
|
month = {10}, |
|
pages = {917-28}, |
|
title = {A reevaluation of biomedical named entity - term relations}, |
|
volume = {8}, |
|
journal = {Journal of bioinformatics and computational biology}, |
|
doi = {10.1142/S0219720010005014} |
|
} |
|
|
|
@MISC{Hoehndorf_applyingontology, |
|
author = {Robert Hoehndorf and Axel-cyrille Ngonga Ngomo and Sampo Pyysalo and Tomoko Ohta and Anika Oellrich and |
|
Dietrich Rebholz-schuhmann}, |
|
title = {Applying ontology design patterns to the implementation of relations in GENIA}, |
|
year = {} |
|
} |
|
""" |
|
|
|
_DATASETNAME = "genia_relation_corpus" |
|
_DISPLAYNAME = "GENIA Relation Corpus" |
|
|
|
_DESCRIPTION = """\ |
|
The extraction of various relations stated to hold between biomolecular entities is one of the most frequently |
|
addressed information extraction tasks in domain studies. Typical relation extraction targets involve protein-protein |
|
interactions or gene regulatory relations. However, in the GENIA corpus, such associations involving change in the |
|
state or properties of biomolecules are captured in the event annotation. |
|
|
|
The GENIA corpus relation annotation aims to complement the event annotation of the corpus by capturing (primarily) |
|
static relations, relations such as part-of that hold between entities without (necessarily) involving change. |
|
""" |
|
|
|
_HOMEPAGE = "http://www.geniaproject.org/genia-corpus/relation-corpus" |
|
|
|
_LICENSE = 'GENIA Project License for Annotated Corpora' |
|
|
|
_URLS = { |
|
_DATASETNAME: { |
|
"train": "http://www.nactem.ac.uk/GENIA/current/GENIA-corpus/Relation/GENIA_relation_annotation_training_data.tar.gz", |
|
"validation": "http://www.nactem.ac.uk/GENIA/current/GENIA-corpus/Relation/GENIA_relation_annotation_development_data.tar.gz", |
|
"test": "http://www.nactem.ac.uk/GENIA/current/GENIA-corpus/Relation/GENIA_relation_annotation_test_data.tar.gz", |
|
}, |
|
} |
|
|
|
_SUPPORTED_TASKS = [Tasks.RELATION_EXTRACTION] |
|
|
|
_SOURCE_VERSION = "1.0.0" |
|
|
|
_BIGBIO_VERSION = "1.0.0" |
|
|
|
|
|
class GeniaRelationCorpusDataset(datasets.GeneratorBasedBuilder): |
|
"""GENIA Relation corpus.""" |
|
|
|
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION) |
|
BIGBIO_VERSION = datasets.Version(_BIGBIO_VERSION) |
|
|
|
BUILDER_CONFIGS = [ |
|
BigBioConfig( |
|
name="genia_relation_corpus_source", |
|
version=SOURCE_VERSION, |
|
description="genia_relation_corpus source schema", |
|
schema="source", |
|
subset_id="genia_relation_corpus", |
|
), |
|
BigBioConfig( |
|
name="genia_relation_corpus_bigbio_kb", |
|
version=BIGBIO_VERSION, |
|
description="genia_relation_corpus BigBio schema", |
|
schema="bigbio_kb", |
|
subset_id="genia_relation_corpus", |
|
), |
|
] |
|
|
|
DEFAULT_CONFIG_NAME = "genia_relation_corpus_source" |
|
|
|
def _info(self) -> datasets.DatasetInfo: |
|
if self.config.schema == "source": |
|
features = datasets.Features( |
|
{ |
|
"id": datasets.Value("string"), |
|
"document_id": datasets.Value("string"), |
|
"text": datasets.Value("string"), |
|
"text_bound_annotations": [ |
|
{ |
|
"offsets": datasets.Sequence([datasets.Value("int32")]), |
|
"text": datasets.Sequence(datasets.Value("string")), |
|
"type": datasets.Value("string"), |
|
"id": datasets.Value("string"), |
|
} |
|
], |
|
"relations": [ |
|
{ |
|
"id": datasets.Value("string"), |
|
"head": { |
|
"ref_id": datasets.Value("string"), |
|
"role": datasets.Value("string"), |
|
}, |
|
"tail": { |
|
"ref_id": datasets.Value("string"), |
|
"role": datasets.Value("string"), |
|
}, |
|
"type": datasets.Value("string"), |
|
} |
|
], |
|
"equivalences": [ |
|
{ |
|
"id": datasets.Value("string"), |
|
"ref_ids": datasets.Sequence(datasets.Value("string")), |
|
} |
|
], |
|
}, |
|
) |
|
|
|
elif self.config.schema == "bigbio_kb": |
|
features = kb_features |
|
|
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=features, |
|
homepage=_HOMEPAGE, |
|
license=str(_LICENSE), |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager) -> List[datasets.SplitGenerator]: |
|
"""Returns SplitGenerators.""" |
|
urls = _URLS[_DATASETNAME] |
|
data_dir = dl_manager.download_and_extract(urls) |
|
return [ |
|
datasets.SplitGenerator( |
|
name=split, |
|
gen_kwargs={ |
|
"data_dir": data_dir[split], |
|
}, |
|
) |
|
for split in [ |
|
datasets.Split.TRAIN, |
|
datasets.Split.VALIDATION, |
|
datasets.Split.TEST, |
|
] |
|
] |
|
|
|
def _generate_examples(self, data_dir) -> Tuple[int, Dict]: |
|
"""Yields examples as (key, example) tuples.""" |
|
for dirpath, _, filenames in os.walk(data_dir): |
|
for guid, filename in enumerate(filenames): |
|
if filename.endswith(".txt"): |
|
txt_file_path = Path(dirpath, filename) |
|
if self.config.schema == "source": |
|
example = parse_brat_file( |
|
txt_file_path, annotation_file_suffixes=[".a1", ".rel"] |
|
) |
|
example["id"] = str(guid) |
|
for key in ["events", "attributes", "normalizations"]: |
|
del example[key] |
|
yield guid, example |
|
elif self.config.schema == "bigbio_kb": |
|
example = brat_parse_to_bigbio_kb( |
|
parse_brat_file(txt_file_path) |
|
) |
|
example["id"] = str(guid) |
|
yield guid, example |
|
|