Datasets:

Languages:
German
ggponc2 / bigbiohub.py
gabrielaltay's picture
upload hub_repos/ggponc2/bigbiohub.py to hub from bigbio repo
6b6cad7
from collections import defaultdict
from dataclasses import dataclass
from enum import Enum
import logging
from pathlib import Path
from types import SimpleNamespace
from typing import TYPE_CHECKING, Dict, Iterable, List, Tuple
import datasets
if TYPE_CHECKING:
import bioc
logger = logging.getLogger(__name__)
BigBioValues = SimpleNamespace(NULL="<BB_NULL_STR>")
@dataclass
class BigBioConfig(datasets.BuilderConfig):
"""BuilderConfig for BigBio."""
name: str = None
version: datasets.Version = None
description: str = None
schema: str = None
subset_id: str = None
class Tasks(Enum):
NAMED_ENTITY_RECOGNITION = "NER"
NAMED_ENTITY_DISAMBIGUATION = "NED"
EVENT_EXTRACTION = "EE"
RELATION_EXTRACTION = "RE"
COREFERENCE_RESOLUTION = "COREF"
QUESTION_ANSWERING = "QA"
TEXTUAL_ENTAILMENT = "TE"
SEMANTIC_SIMILARITY = "STS"
TEXT_PAIRS_CLASSIFICATION = "TXT2CLASS"
PARAPHRASING = "PARA"
TRANSLATION = "TRANSL"
SUMMARIZATION = "SUM"
TEXT_CLASSIFICATION = "TXTCLASS"
entailment_features = datasets.Features(
{
"id": datasets.Value("string"),
"premise": datasets.Value("string"),
"hypothesis": datasets.Value("string"),
"label": datasets.Value("string"),
}
)
pairs_features = datasets.Features(
{
"id": datasets.Value("string"),
"document_id": datasets.Value("string"),
"text_1": datasets.Value("string"),
"text_2": datasets.Value("string"),
"label": datasets.Value("string"),
}
)
qa_features = datasets.Features(
{
"id": datasets.Value("string"),
"question_id": datasets.Value("string"),
"document_id": datasets.Value("string"),
"question": datasets.Value("string"),
"type": datasets.Value("string"),
"choices": [datasets.Value("string")],
"context": datasets.Value("string"),
"answer": datasets.Sequence(datasets.Value("string")),
}
)
text_features = datasets.Features(
{
"id": datasets.Value("string"),
"document_id": datasets.Value("string"),
"text": datasets.Value("string"),
"labels": [datasets.Value("string")],
}
)
text2text_features = datasets.Features(
{
"id": datasets.Value("string"),
"document_id": datasets.Value("string"),
"text_1": datasets.Value("string"),
"text_2": datasets.Value("string"),
"text_1_name": datasets.Value("string"),
"text_2_name": datasets.Value("string"),
}
)
kb_features = datasets.Features(
{
"id": datasets.Value("string"),
"document_id": datasets.Value("string"),
"passages": [
{
"id": datasets.Value("string"),
"type": datasets.Value("string"),
"text": datasets.Sequence(datasets.Value("string")),
"offsets": datasets.Sequence([datasets.Value("int32")]),
}
],
"entities": [
{
"id": datasets.Value("string"),
"type": datasets.Value("string"),
"text": datasets.Sequence(datasets.Value("string")),
"offsets": datasets.Sequence([datasets.Value("int32")]),
"normalized": [
{
"db_name": datasets.Value("string"),
"db_id": datasets.Value("string"),
}
],
}
],
"events": [
{
"id": datasets.Value("string"),
"type": datasets.Value("string"),
# refers to the text_bound_annotation of the trigger
"trigger": {
"text": datasets.Sequence(datasets.Value("string")),
"offsets": datasets.Sequence([datasets.Value("int32")]),
},
"arguments": [
{
"role": datasets.Value("string"),
"ref_id": datasets.Value("string"),
}
],
}
],
"coreferences": [
{
"id": datasets.Value("string"),
"entity_ids": datasets.Sequence(datasets.Value("string")),
}
],
"relations": [
{
"id": datasets.Value("string"),
"type": datasets.Value("string"),
"arg1_id": datasets.Value("string"),
"arg2_id": datasets.Value("string"),
"normalized": [
{
"db_name": datasets.Value("string"),
"db_id": datasets.Value("string"),
}
],
}
],
}
)
TASK_TO_SCHEMA = {
Tasks.NAMED_ENTITY_RECOGNITION.name: "KB",
Tasks.NAMED_ENTITY_DISAMBIGUATION.name: "KB",
Tasks.EVENT_EXTRACTION.name: "KB",
Tasks.RELATION_EXTRACTION.name: "KB",
Tasks.COREFERENCE_RESOLUTION.name: "KB",
Tasks.QUESTION_ANSWERING.name: "QA",
Tasks.TEXTUAL_ENTAILMENT.name: "TE",
Tasks.SEMANTIC_SIMILARITY.name: "PAIRS",
Tasks.TEXT_PAIRS_CLASSIFICATION.name: "PAIRS",
Tasks.PARAPHRASING.name: "T2T",
Tasks.TRANSLATION.name: "T2T",
Tasks.SUMMARIZATION.name: "T2T",
Tasks.TEXT_CLASSIFICATION.name: "TEXT",
}
SCHEMA_TO_TASKS = defaultdict(set)
for task, schema in TASK_TO_SCHEMA.items():
SCHEMA_TO_TASKS[schema].add(task)
SCHEMA_TO_TASKS = dict(SCHEMA_TO_TASKS)
VALID_TASKS = set(TASK_TO_SCHEMA.keys())
VALID_SCHEMAS = set(TASK_TO_SCHEMA.values())
SCHEMA_TO_FEATURES = {
"KB": kb_features,
"QA": qa_features,
"TE": entailment_features,
"T2T": text2text_features,
"TEXT": text_features,
"PAIRS": pairs_features,
}
def get_texts_and_offsets_from_bioc_ann(ann: "bioc.BioCAnnotation") -> Tuple:
offsets = [(loc.offset, loc.offset + loc.length) for loc in ann.locations]
text = ann.text
if len(offsets) > 1:
i = 0
texts = []
for start, end in offsets:
chunk_len = end - start
texts.append(text[i : chunk_len + i])
i += chunk_len
while i < len(text) and text[i] == " ":
i += 1
else:
texts = [text]
return offsets, texts
def remove_prefix(a: str, prefix: str) -> str:
if a.startswith(prefix):
a = a[len(prefix) :]
return a
def parse_brat_file(
txt_file: Path,
annotation_file_suffixes: List[str] = None,
parse_notes: bool = False,
) -> Dict:
"""
Parse a brat file into the schema defined below.
`txt_file` should be the path to the brat '.txt' file you want to parse, e.g. 'data/1234.txt'
Assumes that the annotations are contained in one or more of the corresponding '.a1', '.a2' or '.ann' files,
e.g. 'data/1234.ann' or 'data/1234.a1' and 'data/1234.a2'.
Will include annotator notes, when `parse_notes == True`.
brat_features = datasets.Features(
{
"id": datasets.Value("string"),
"document_id": datasets.Value("string"),
"text": datasets.Value("string"),
"text_bound_annotations": [ # T line in brat, e.g. type or event trigger
{
"offsets": datasets.Sequence([datasets.Value("int32")]),
"text": datasets.Sequence(datasets.Value("string")),
"type": datasets.Value("string"),
"id": datasets.Value("string"),
}
],
"events": [ # E line in brat
{
"trigger": datasets.Value(
"string"
), # refers to the text_bound_annotation of the trigger,
"id": datasets.Value("string"),
"type": datasets.Value("string"),
"arguments": datasets.Sequence(
{
"role": datasets.Value("string"),
"ref_id": datasets.Value("string"),
}
),
}
],
"relations": [ # R line in brat
{
"id": datasets.Value("string"),
"head": {
"ref_id": datasets.Value("string"),
"role": datasets.Value("string"),
},
"tail": {
"ref_id": datasets.Value("string"),
"role": datasets.Value("string"),
},
"type": datasets.Value("string"),
}
],
"equivalences": [ # Equiv line in brat
{
"id": datasets.Value("string"),
"ref_ids": datasets.Sequence(datasets.Value("string")),
}
],
"attributes": [ # M or A lines in brat
{
"id": datasets.Value("string"),
"type": datasets.Value("string"),
"ref_id": datasets.Value("string"),
"value": datasets.Value("string"),
}
],
"normalizations": [ # N lines in brat
{
"id": datasets.Value("string"),
"type": datasets.Value("string"),
"ref_id": datasets.Value("string"),
"resource_name": datasets.Value(
"string"
), # Name of the resource, e.g. "Wikipedia"
"cuid": datasets.Value(
"string"
), # ID in the resource, e.g. 534366
"text": datasets.Value(
"string"
), # Human readable description/name of the entity, e.g. "Barack Obama"
}
],
### OPTIONAL: Only included when `parse_notes == True`
"notes": [ # # lines in brat
{
"id": datasets.Value("string"),
"type": datasets.Value("string"),
"ref_id": datasets.Value("string"),
"text": datasets.Value("string"),
}
],
},
)
"""
example = {}
example["document_id"] = txt_file.with_suffix("").name
with txt_file.open() as f:
example["text"] = f.read()
# If no specific suffixes of the to-be-read annotation files are given - take standard suffixes
# for event extraction
if annotation_file_suffixes is None:
annotation_file_suffixes = [".a1", ".a2", ".ann"]
if len(annotation_file_suffixes) == 0:
raise AssertionError(
"At least one suffix for the to-be-read annotation files should be given!"
)
ann_lines = []
for suffix in annotation_file_suffixes:
annotation_file = txt_file.with_suffix(suffix)
if annotation_file.exists():
with annotation_file.open() as f:
ann_lines.extend(f.readlines())
example["text_bound_annotations"] = []
example["events"] = []
example["relations"] = []
example["equivalences"] = []
example["attributes"] = []
example["normalizations"] = []
if parse_notes:
example["notes"] = []
for line in ann_lines:
line = line.strip()
if not line:
continue
if line.startswith("T"): # Text bound
ann = {}
fields = line.split("\t")
ann["id"] = fields[0]
ann["type"] = fields[1].split()[0]
ann["offsets"] = []
span_str = remove_prefix(fields[1], (ann["type"] + " "))
text = fields[2]
for span in span_str.split(";"):
start, end = span.split()
ann["offsets"].append([int(start), int(end)])
# Heuristically split text of discontiguous entities into chunks
ann["text"] = []
if len(ann["offsets"]) > 1:
i = 0
for start, end in ann["offsets"]:
chunk_len = end - start
ann["text"].append(text[i : chunk_len + i])
i += chunk_len
while i < len(text) and text[i] == " ":
i += 1
else:
ann["text"] = [text]
example["text_bound_annotations"].append(ann)
elif line.startswith("E"):
ann = {}
fields = line.split("\t")
ann["id"] = fields[0]
ann["type"], ann["trigger"] = fields[1].split()[0].split(":")
ann["arguments"] = []
for role_ref_id in fields[1].split()[1:]:
argument = {
"role": (role_ref_id.split(":"))[0],
"ref_id": (role_ref_id.split(":"))[1],
}
ann["arguments"].append(argument)
example["events"].append(ann)
elif line.startswith("R"):
ann = {}
fields = line.split("\t")
ann["id"] = fields[0]
ann["type"] = fields[1].split()[0]
ann["head"] = {
"role": fields[1].split()[1].split(":")[0],
"ref_id": fields[1].split()[1].split(":")[1],
}
ann["tail"] = {
"role": fields[1].split()[2].split(":")[0],
"ref_id": fields[1].split()[2].split(":")[1],
}
example["relations"].append(ann)
# '*' seems to be the legacy way to mark equivalences,
# but I couldn't find any info on the current way
# this might have to be adapted dependent on the brat version
# of the annotation
elif line.startswith("*"):
ann = {}
fields = line.split("\t")
ann["id"] = fields[0]
ann["ref_ids"] = fields[1].split()[1:]
example["equivalences"].append(ann)
elif line.startswith("A") or line.startswith("M"):
ann = {}
fields = line.split("\t")
ann["id"] = fields[0]
info = fields[1].split()
ann["type"] = info[0]
ann["ref_id"] = info[1]
if len(info) > 2:
ann["value"] = info[2]
else:
ann["value"] = ""
example["attributes"].append(ann)
elif line.startswith("N"):
ann = {}
fields = line.split("\t")
ann["id"] = fields[0]
ann["text"] = fields[2]
info = fields[1].split()
ann["type"] = info[0]
ann["ref_id"] = info[1]
ann["resource_name"] = info[2].split(":")[0]
ann["cuid"] = info[2].split(":")[1]
example["normalizations"].append(ann)
elif parse_notes and line.startswith("#"):
ann = {}
fields = line.split("\t")
ann["id"] = fields[0]
ann["text"] = fields[2] if len(fields) == 3 else BigBioValues.NULL
info = fields[1].split()
ann["type"] = info[0]
ann["ref_id"] = info[1]
example["notes"].append(ann)
return example
def brat_parse_to_bigbio_kb(brat_parse: Dict) -> Dict:
"""
Transform a brat parse (conforming to the standard brat schema) obtained with
`parse_brat_file` into a dictionary conforming to the `bigbio-kb` schema (as defined in ../schemas/kb.py)
:param brat_parse:
"""
unified_example = {}
# Prefix all ids with document id to ensure global uniqueness,
# because brat ids are only unique within their document
id_prefix = brat_parse["document_id"] + "_"
# identical
unified_example["document_id"] = brat_parse["document_id"]
unified_example["passages"] = [
{
"id": id_prefix + "_text",
"type": "abstract",
"text": [brat_parse["text"]],
"offsets": [[0, len(brat_parse["text"])]],
}
]
# get normalizations
ref_id_to_normalizations = defaultdict(list)
for normalization in brat_parse["normalizations"]:
ref_id_to_normalizations[normalization["ref_id"]].append(
{
"db_name": normalization["resource_name"],
"db_id": normalization["cuid"],
}
)
# separate entities and event triggers
unified_example["events"] = []
non_event_ann = brat_parse["text_bound_annotations"].copy()
for event in brat_parse["events"]:
event = event.copy()
event["id"] = id_prefix + event["id"]
trigger = next(
tr
for tr in brat_parse["text_bound_annotations"]
if tr["id"] == event["trigger"]
)
if trigger in non_event_ann:
non_event_ann.remove(trigger)
event["trigger"] = {
"text": trigger["text"].copy(),
"offsets": trigger["offsets"].copy(),
}
for argument in event["arguments"]:
argument["ref_id"] = id_prefix + argument["ref_id"]
unified_example["events"].append(event)
unified_example["entities"] = []
anno_ids = [ref_id["id"] for ref_id in non_event_ann]
for ann in non_event_ann:
entity_ann = ann.copy()
entity_ann["id"] = id_prefix + entity_ann["id"]
entity_ann["normalized"] = ref_id_to_normalizations[ann["id"]]
unified_example["entities"].append(entity_ann)
# massage relations
unified_example["relations"] = []
skipped_relations = set()
for ann in brat_parse["relations"]:
if (
ann["head"]["ref_id"] not in anno_ids
or ann["tail"]["ref_id"] not in anno_ids
):
skipped_relations.add(ann["id"])
continue
unified_example["relations"].append(
{
"arg1_id": id_prefix + ann["head"]["ref_id"],
"arg2_id": id_prefix + ann["tail"]["ref_id"],
"id": id_prefix + ann["id"],
"type": ann["type"],
"normalized": [],
}
)
if len(skipped_relations) > 0:
example_id = brat_parse["document_id"]
logger.info(
f"Example:{example_id}: The `bigbio_kb` schema allows `relations` only between entities."
f" Skip (for now): "
f"{list(skipped_relations)}"
)
# get coreferences
unified_example["coreferences"] = []
for i, ann in enumerate(brat_parse["equivalences"], start=1):
is_entity_cluster = True
for ref_id in ann["ref_ids"]:
if not ref_id.startswith("T"): # not textbound -> no entity
is_entity_cluster = False
elif ref_id not in anno_ids: # event trigger -> no entity
is_entity_cluster = False
if is_entity_cluster:
entity_ids = [id_prefix + i for i in ann["ref_ids"]]
unified_example["coreferences"].append(
{"id": id_prefix + str(i), "entity_ids": entity_ids}
)
return unified_example