|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
""" |
|
LINNAEUS provides a novel corpus of full-text documents manually annotated for species mentions. |
|
|
|
To understand the true performance of the LINNAEUS system, we generated a gold standard dataset specifically |
|
annotated to evaluate species name identification software. The reliability of this gold standard is high, |
|
however some species names are likely to be omitted from this evaluation set, as shown by IAA analysis. |
|
Performance of species tagging by LINNAEUS on full-text articles is very good, with 94.3% recall and |
|
97.1% precision on mention level, and 98.1% recall and 90.4% precision on document level. |
|
""" |
|
|
|
import csv |
|
import os |
|
from pathlib import Path |
|
from typing import Dict, List, Tuple |
|
|
|
import datasets |
|
|
|
from .bigbiohub import kb_features |
|
from .bigbiohub import BigBioConfig |
|
from .bigbiohub import Tasks |
|
|
|
_LANGUAGES = ['English'] |
|
_PUBMED = True |
|
_LOCAL = False |
|
_CITATION = """\ |
|
@Article{gerner2010linnaeus, |
|
title={LINNAEUS: a species name identification system for biomedical literature}, |
|
author={Gerner, Martin and Nenadic, Goran and Bergman, Casey M}, |
|
journal={BMC bioinformatics}, |
|
volume={11}, |
|
number={1}, |
|
pages={1--17}, |
|
year={2010}, |
|
publisher={BioMed Central} |
|
} |
|
""" |
|
|
|
_DATASETNAME = "linnaeus" |
|
_DISPLAYNAME = "LINNAEUS" |
|
|
|
_DESCRIPTION = """\ |
|
Linnaeus is a novel corpus of full-text documents manually annotated for species mentions. |
|
""" |
|
|
|
_HOMEPAGE = "http://linnaeus.sourceforge.net/" |
|
|
|
_LICENSE = 'Creative Commons Attribution 4.0 International' |
|
|
|
_URLS = { |
|
_DATASETNAME: "https://sourceforge.net/projects/linnaeus/files/Corpora/manual-corpus-species-1.0.tar.gz/download", |
|
} |
|
|
|
_SUPPORTED_TASKS = [Tasks.NAMED_ENTITY_RECOGNITION, Tasks.NAMED_ENTITY_DISAMBIGUATION] |
|
|
|
_SOURCE_VERSION = "1.0.0" |
|
_BIGBIO_VERSION = "1.0.0" |
|
|
|
|
|
class LinnaeusDataset(datasets.GeneratorBasedBuilder): |
|
"""Linneaus provides a new gold-standard corpus of full-text articles |
|
with manually annotated mentions of species names.""" |
|
|
|
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION) |
|
BIGBIO_VERSION = datasets.Version(_BIGBIO_VERSION) |
|
|
|
BUILDER_CONFIGS = [ |
|
BigBioConfig( |
|
name="linnaeus_source", |
|
version=SOURCE_VERSION, |
|
description="Linnaeus source schema", |
|
schema="source", |
|
subset_id="linnaeus", |
|
), |
|
BigBioConfig( |
|
name="linnaeus_filtered_source", |
|
version=SOURCE_VERSION, |
|
description="Linnaeus source schema (filtered tags)", |
|
schema="source", |
|
subset_id="linnaeus_filtered", |
|
), |
|
BigBioConfig( |
|
name="linnaeus_bigbio_kb", |
|
version=BIGBIO_VERSION, |
|
description="Linnaeus BigBio schema", |
|
schema="bigbio_kb", |
|
subset_id="linnaeus", |
|
), |
|
BigBioConfig( |
|
name="linnaeus_filtered_bigbio_kb", |
|
version=BIGBIO_VERSION, |
|
description="Linnaeus BigBio schema (filtered tags)", |
|
schema="bigbio_kb", |
|
subset_id="linnaeus_filtered", |
|
), |
|
] |
|
|
|
DEFAULT_CONFIG_NAME = "linneaus_source" |
|
|
|
def _info(self) -> datasets.DatasetInfo: |
|
|
|
if self.config.schema == "source": |
|
features = datasets.Features( |
|
{ |
|
"document_id": datasets.Value("string"), |
|
"document_type": datasets.Value("string"), |
|
"text": datasets.Value("string"), |
|
"entities": [ |
|
{ |
|
"id": datasets.Value("string"), |
|
"type": datasets.Value("string"), |
|
"text": datasets.Sequence(datasets.Value("string")), |
|
"offsets": datasets.Sequence([datasets.Value("int32")]), |
|
"normalized": [ |
|
{ |
|
"db_name": datasets.Value("string"), |
|
"db_id": datasets.Value("string"), |
|
} |
|
], |
|
} |
|
], |
|
} |
|
) |
|
|
|
elif self.config.schema == "bigbio_kb": |
|
features = kb_features |
|
|
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=features, |
|
homepage=_HOMEPAGE, |
|
license=str(_LICENSE), |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager) -> List[datasets.SplitGenerator]: |
|
urls = _URLS[_DATASETNAME] |
|
data_dir = dl_manager.download_and_extract(urls) |
|
|
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={ |
|
"data_files": os.path.join(data_dir, "manual-corpus-species-1.0") |
|
}, |
|
), |
|
] |
|
|
|
def _generate_examples(self, data_files: Path) -> Tuple[int, Dict]: |
|
"""Yields examples as (key, example) tuples.""" |
|
data_path = Path(os.path.join(data_files, "txt")) |
|
if self.config.subset_id.endswith("filtered"): |
|
tags_path = Path(os.path.join(data_files, "filtered_tags.tsv")) |
|
else: |
|
tags_path = Path(os.path.join(data_files, "tags.tsv")) |
|
data_files = list(data_path.glob("*txt")) |
|
tags = self._load_tags(tags_path) |
|
|
|
if self.config.schema == "source": |
|
for guid, data_file in enumerate(data_files): |
|
document_key = data_file.stem |
|
if document_key not in tags: |
|
continue |
|
example = self._create_source_example(data_file, tags.get(document_key)) |
|
example["document_id"] = str(document_key) |
|
yield guid, example |
|
|
|
elif self.config.schema == "bigbio_kb": |
|
for guid, data_file in enumerate(data_files): |
|
document_key = data_file.stem |
|
if document_key not in tags: |
|
continue |
|
example = self._create_kb_example(data_file, tags.get(document_key)) |
|
example["document_id"] = str(document_key) |
|
example["id"] = guid |
|
yield guid, example |
|
|
|
@staticmethod |
|
def _load_tags(path: Path) -> Dict: |
|
"""Loads all tags into a dictionary with document ID as keys and all annotations to that file as values.""" |
|
tags = {} |
|
document_id_col = 1 |
|
|
|
with open(path, encoding="utf-8") as csv_file: |
|
reader = csv.reader(csv_file, delimiter="\t") |
|
next(reader) |
|
for line in reader: |
|
document_id = line[document_id_col] |
|
line.pop(document_id_col) |
|
if document_id not in tags: |
|
tags[document_id] = [line] |
|
else: |
|
tags[document_id].append(line) |
|
return tags |
|
|
|
def _create_source_example(self, txt_file, tags) -> Dict: |
|
"""Creates example in source schema.""" |
|
example = {} |
|
example["entities"] = [] |
|
with open(txt_file, "r") as file: |
|
text = file.read() |
|
example["text"] = text |
|
example["document_type"] = "Article" |
|
for tag_id, tag in enumerate(tags): |
|
species_id, start, end, entity_text, _ = tag |
|
entity_type, db_name, db_id = species_id.split(":") |
|
entity = { |
|
"id": str(tag_id), |
|
"type": entity_type, |
|
"text": [entity_text], |
|
"offsets": [(int(start), int(end))], |
|
"normalized": [ |
|
{ |
|
"db_name": db_name, |
|
"db_id": db_id, |
|
} |
|
], |
|
} |
|
example["entities"].append(entity) |
|
return example |
|
|
|
def _create_kb_example(self, txt_file, tags) -> Dict: |
|
"""Creates example in BigBio KB schema.""" |
|
example = {} |
|
with open(txt_file, "r") as file: |
|
text = file.read() |
|
|
|
example["passages"] = [ |
|
{ |
|
"id": f"{txt_file.stem}__text", |
|
"text": [text], |
|
"type": "Article", |
|
"offsets": [(0, len(text))], |
|
} |
|
] |
|
|
|
example["entities"] = [] |
|
for tag_id, tag in enumerate(tags): |
|
species_id, start, end, entity_text, _ = tag |
|
entity_type, db_name, db_id = species_id.split(":") |
|
entity = { |
|
"id": f"{txt_file.stem}__T{str(tag_id)}", |
|
"type": entity_type, |
|
"text": [entity_text], |
|
"offsets": [(int(start), int(end))], |
|
"normalized": [ |
|
{ |
|
"db_name": db_name, |
|
"db_id": db_id, |
|
} |
|
], |
|
} |
|
example["entities"].append(entity) |
|
example["events"] = [] |
|
example["relations"] = [] |
|
example["coreferences"] = [] |
|
return example |
|
|