|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import ast |
|
from itertools import product |
|
from pathlib import Path |
|
from typing import Dict, List, Tuple |
|
|
|
import datasets |
|
|
|
from .bigbiohub import (BigBioConfig, Tasks, brat_parse_to_bigbio_kb, |
|
kb_features, parse_brat_file) |
|
|
|
_LANGUAGES = ["English", "French", "German", "Dutch", "Spanish"] |
|
|
|
_LOCAL = False |
|
_PUBMED = True |
|
|
|
_CITATION = """\ |
|
@article{10.1093/jamia/ocv037, |
|
author = {Kors, Jan A and Clematide, Simon and Akhondi, |
|
Saber A and van Mulligen, Erik M and Rebholz-Schuhmann, Dietrich}, |
|
title = "{A multilingual gold-standard corpus for biomedical concept recognition: the Mantra GSC}", |
|
journal = {Journal of the American Medical Informatics Association}, |
|
volume = {22}, |
|
number = {5}, |
|
pages = {948-956}, |
|
year = {2015}, |
|
month = {05}, |
|
abstract = "{Objective To create a multilingual gold-standard corpus for biomedical concept recognition.Materials |
|
and methods We selected text units from different parallel corpora (Medline abstract titles, drug labels, |
|
biomedical patent claims) in English, French, German, Spanish, and Dutch. Three annotators per language |
|
independently annotated the biomedical concepts, based on a subset of the Unified Medical Language System and |
|
covering a wide range of semantic groups. To reduce the annotation workload, automatically generated |
|
preannotations were provided. Individual annotations were automatically harmonized and then adjudicated, and |
|
cross-language consistency checks were carried out to arrive at the final annotations.Results The number of final |
|
annotations was 5530. Inter-annotator agreement scores indicate good agreement (median F-score 0.79), and are |
|
similar to those between individual annotators and the gold standard. The automatically generated harmonized |
|
annotation set for each language performed equally well as the best annotator for that language.Discussion The use |
|
of automatic preannotations, harmonized annotations, and parallel corpora helped to keep the manual annotation |
|
efforts manageable. The inter-annotator agreement scores provide a reference standard for gauging the performance |
|
of automatic annotation techniques.Conclusion To our knowledge, this is the first gold-standard corpus for |
|
biomedical concept recognition in languages other than English. Other distinguishing features are the wide variety |
|
of semantic groups that are being covered, and the diversity of text genres that were annotated.}", |
|
issn = {1067-5027}, |
|
doi = {10.1093/jamia/ocv037}, |
|
url = {https://doi.org/10.1093/jamia/ocv037}, |
|
eprint = {https://academic.oup.com/jamia/article-pdf/22/5/948/34146393/ocv037.pdf}, |
|
} |
|
""" |
|
|
|
_DATASETNAME = "mantra_gsc" |
|
_DISPLAYNAME = "Mantra GSC" |
|
|
|
_DESCRIPTION = """\ |
|
We selected text units from different parallel corpora (Medline abstract titles, drug labels, biomedical patent claims) |
|
in English, French, German, Spanish, and Dutch. Three annotators per language independently annotated the biomedical |
|
concepts, based on a subset of the Unified Medical Language System and covering a wide range of semantic groups. |
|
""" |
|
|
|
_HOMEPAGE = "https://github.com/mi-erasmusmc/Mantra-Gold-Standard-Corpus" |
|
|
|
_LICENSE = "GPL_3p0_ONLY" |
|
|
|
_URLS = { |
|
_DATASETNAME: "https://github.com/mi-erasmusmc/Mantra-Gold-Standard-Corpus/raw/main/Mantra-GSC-brat.zip", |
|
} |
|
|
|
_SUPPORTED_TASKS = [Tasks.NAMED_ENTITY_RECOGNITION, Tasks.NAMED_ENTITY_DISAMBIGUATION] |
|
|
|
_SOURCE_VERSION = "1.0.0" |
|
|
|
_BIGBIO_VERSION = "1.0.0" |
|
|
|
_LANGUAGES_2 = { |
|
"es": "Spanish", |
|
"fr": "French", |
|
"de": "German", |
|
"nl": "Dutch", |
|
"en": "English", |
|
} |
|
|
|
_DATASET_TYPES = { |
|
"emea": "EMEA", |
|
"medline": "Medline", |
|
"patents": "Patents", |
|
} |
|
|
|
|
|
class MantraGSCDataset(datasets.GeneratorBasedBuilder): |
|
"""Mantra Gold Standard Corpus (GSC) dataset.""" |
|
|
|
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION) |
|
BIGBIO_VERSION = datasets.Version(_BIGBIO_VERSION) |
|
|
|
BUILDER_CONFIGS = [] |
|
|
|
for language, dataset_type in product(_LANGUAGES_2, _DATASET_TYPES): |
|
if dataset_type == "patents" and language in ["nl", "es"]: |
|
continue |
|
|
|
BUILDER_CONFIGS.append( |
|
BigBioConfig( |
|
name=f"mantra_gsc_{language}_{dataset_type}_source", |
|
version=SOURCE_VERSION, |
|
description=f"Mantra GSC {_LANGUAGES_2[language]} {_DATASET_TYPES[dataset_type]} source schema", |
|
schema="source", |
|
subset_id=f"mantra_gsc_{language}_{_DATASET_TYPES[dataset_type]}", |
|
) |
|
) |
|
BUILDER_CONFIGS.append( |
|
BigBioConfig( |
|
name=f"mantra_gsc_{language}_{dataset_type}_bigbio_kb", |
|
version=SOURCE_VERSION, |
|
description=f"Mantra GSC {_LANGUAGES_2[language]} {_DATASET_TYPES[dataset_type]} BigBio schema", |
|
schema="bigbio_kb", |
|
subset_id=f"mantra_gsc_{language}_{_DATASET_TYPES[dataset_type]}", |
|
) |
|
) |
|
|
|
DEFAULT_CONFIG_NAME = "mantra_gsc_en_medline_source" |
|
|
|
def _info(self) -> datasets.DatasetInfo: |
|
|
|
if self.config.schema == "source": |
|
features = datasets.Features( |
|
{ |
|
"document_id": datasets.Value("string"), |
|
"text": datasets.Value("string"), |
|
"entities": [ |
|
{ |
|
"entity_id": datasets.Value("string"), |
|
"type": datasets.Value("string"), |
|
"offsets": datasets.Sequence([datasets.Value("int32")]), |
|
"text": datasets.Sequence(datasets.Value("string")), |
|
"cui": datasets.Value("string"), |
|
"preferred_term": datasets.Value("string"), |
|
"semantic_type": datasets.Value("string"), |
|
"normalized": [ |
|
{ |
|
"db_name": datasets.Value("string"), |
|
"db_id": datasets.Value("string"), |
|
} |
|
], |
|
} |
|
], |
|
} |
|
) |
|
|
|
elif self.config.schema == "bigbio_kb": |
|
features = kb_features |
|
|
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=features, |
|
homepage=_HOMEPAGE, |
|
license=str(_LICENSE), |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager) -> List[datasets.SplitGenerator]: |
|
"""Returns SplitGenerators.""" |
|
|
|
urls = _URLS[_DATASETNAME] |
|
data_dir = dl_manager.download_and_extract(urls) |
|
data_dir = Path(data_dir) / "Mantra-GSC" |
|
|
|
language, dataset_type = self.config.name.split("_")[2:4] |
|
|
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={ |
|
"data_dir": data_dir, |
|
"language": language, |
|
"dataset_type": dataset_type, |
|
}, |
|
), |
|
] |
|
|
|
def _generate_examples(self, data_dir: Path, language: str, dataset_type: str) -> Tuple[int, Dict]: |
|
"""Yields examples as (key, example) tuples.""" |
|
data_dir = data_dir / f"{_LANGUAGES_2[language]}" |
|
|
|
if dataset_type in ["patents", "emea"]: |
|
data_dir = data_dir / f"{_DATASET_TYPES[dataset_type]}_ec22-cui-best_man" |
|
else: |
|
|
|
if language != "en": |
|
data_dir = data_dir / f"{_DATASET_TYPES[dataset_type]}_EN_{language.upper()}_ec22-cui-best_man" |
|
else: |
|
data_dir = [ |
|
data_dir / f"{_DATASET_TYPES[dataset_type]}_EN_{_lang.upper()}_ec22-cui-best_man" |
|
for _lang in _LANGUAGES_2 |
|
if _lang != "en" |
|
] |
|
|
|
if not isinstance(data_dir, list): |
|
data_dir: List[Path] = [data_dir] |
|
|
|
raw_files = [raw_file for _dir in data_dir for raw_file in _dir.glob("*.txt")] |
|
|
|
if self.config.schema == "source": |
|
for i, raw_file in enumerate(raw_files): |
|
brat_example = parse_brat_file(raw_file, parse_notes=True) |
|
source_example = self._to_source_example(brat_example) |
|
yield i, source_example |
|
|
|
elif self.config.schema == "bigbio_kb": |
|
for i, raw_file in enumerate(raw_files): |
|
brat_example = parse_brat_file(raw_file, parse_notes=True) |
|
brat_to_bigbio_example = self._brat_to_bigbio_example(brat_example) |
|
kb_example = brat_parse_to_bigbio_kb(brat_to_bigbio_example) |
|
kb_example["id"] = i |
|
yield i, kb_example |
|
|
|
def _to_source_example(self, brat_example: Dict) -> Dict: |
|
source_example = { |
|
"document_id": brat_example["document_id"], |
|
"text": brat_example["text"], |
|
} |
|
|
|
source_example["entities"] = [] |
|
for entity_annotation, ann_notes in zip(brat_example["text_bound_annotations"], brat_example["notes"]): |
|
entity_ann = entity_annotation.copy() |
|
|
|
|
|
entity_ann["entity_id"] = entity_ann["id"] |
|
entity_ann.pop("id") |
|
|
|
|
|
assert entity_ann["entity_id"] == ann_notes["ref_id"] |
|
notes_values = ast.literal_eval(ann_notes["text"]) |
|
if len(notes_values) == 4: |
|
cui, preferred_term, semantic_type, semantic_group = notes_values |
|
else: |
|
preferred_term, semantic_type, semantic_group = notes_values |
|
cui = entity_ann["type"] |
|
entity_ann["cui"] = cui |
|
entity_ann["preferred_term"] = preferred_term |
|
entity_ann["semantic_type"] = semantic_type |
|
entity_ann["type"] = semantic_group |
|
entity_ann["normalized"] = [{"db_name": "UMLS", "db_id": cui}] |
|
|
|
|
|
source_example["entities"].append(entity_ann) |
|
|
|
return source_example |
|
|
|
def _brat_to_bigbio_example(self, brat_example: Dict) -> Dict: |
|
kb_example = { |
|
"document_id": brat_example["document_id"], |
|
|
|
"text": brat_example["text"], |
|
} |
|
kb_example["text_bound_annotations"] = [] |
|
kb_example["normalizations"] = [] |
|
for entity_annotation, ann_notes in zip(brat_example["text_bound_annotations"], brat_example["notes"]): |
|
entity_ann = entity_annotation.copy() |
|
|
|
assert entity_ann["id"] == ann_notes["ref_id"] |
|
notes_values = ast.literal_eval(ann_notes["text"]) |
|
if len(notes_values) == 4: |
|
cui, _, _, semantic_group = notes_values |
|
else: |
|
_, _, semantic_group = notes_values |
|
cui = entity_ann["type"] |
|
entity_ann["type"] = semantic_group |
|
kb_example["text_bound_annotations"].append(entity_ann) |
|
kb_example["normalizations"].append( |
|
{ |
|
"type": semantic_group, |
|
"ref_id": entity_ann["id"], |
|
"resource_name": "UMLS", |
|
"cuid": cui, |
|
"text": "", |
|
} |
|
) |
|
|
|
kb_example["events"] = brat_example["events"] |
|
kb_example["relations"] = brat_example["relations"] |
|
kb_example["equivalences"] = brat_example["equivalences"] |
|
kb_example["attributes"] = brat_example["attributes"] |
|
kb_example["notes"] = brat_example["notes"] |
|
|
|
return kb_example |
|
|