Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
File size: 5,635 Bytes
fe23b87
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
# coding=utf-8
# Copyright 2022 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import glob
import json
import os
from dataclasses import dataclass
from pathlib import Path
from typing import Dict, Iterator, Tuple
from xml.etree import ElementTree as ET

import datasets

from .bigbiohub import pairs_features
from .bigbiohub import BigBioConfig
from .bigbiohub import Tasks

_LANGUAGES = ['English']
_PUBMED = False
_LOCAL = False
_CITATION = """\
@inproceedings{MEDIQA2019,
  author    = {Asma {Ben Abacha} and Chaitanya Shivade and Dina Demner{-}Fushman},
  title     = {Overview of the MEDIQA 2019 Shared Task on Textual Inference, Question Entailment and Question Answering},
  booktitle = {ACL-BioNLP 2019},
  year      = {2019}
}
"""

_DATASETNAME = "mediqa_rqe"
_DISPLAYNAME = "MEDIQA RQE"

_DESCRIPTION = """\
The MEDIQA challenge is an ACL-BioNLP 2019 shared task aiming to attract further research efforts in Natural Language Inference (NLI), Recognizing Question Entailment (RQE), and their applications in medical Question Answering (QA).
Mailing List: https://groups.google.com/forum/#!forum/bionlp-mediqa

The objective of the RQE task is to identify entailment between two questions in the context of QA. We use the following definition of question entailment: “a question A entails a question B if every answer to B is also a complete or partial answer to A” [1]
    [1] A. Ben Abacha & D. Demner-Fushman. “Recognizing Question Entailment for Medical Question Answering”. AMIA 2016.
"""

_HOMEPAGE = "https://sites.google.com/view/mediqa2019"
_LICENSE = 'License information unavailable'
_URLS = {
    _DATASETNAME: "https://github.com/abachaa/MEDIQA2019/archive/refs/heads/master.zip"
}

_SUPPORTED_TASKS = [Tasks.TEXT_PAIRS_CLASSIFICATION]
_SOURCE_VERSION = "1.0.0"
_BIGBIO_VERSION = "1.0.0"


class MediqaRQEDataset(datasets.GeneratorBasedBuilder):
    """MediqaRQE Dataset"""

    SOURCE_VERSION = datasets.Version(_SOURCE_VERSION)
    BIGBIO_VERSION = datasets.Version(_BIGBIO_VERSION)

    BUILDER_CONFIGS = [
        # Source Schema
        BigBioConfig(
            name="mediqa_rqe_source",
            version=SOURCE_VERSION,
            description="MEDIQA RQE source schema",
            schema="source",
            subset_id="mediqa_rqe_source",
        ),
        # BigBio Schema
        BigBioConfig(
            name="mediqa_rqe_bigbio_pairs",
            version=BIGBIO_VERSION,
            description="MEDIQA RQE BigBio schema",
            schema="bigbio_pairs",
            subset_id="mediqa_rqe_bigbio_pairs",
        ),
    ]

    DEFAULT_CONFIG_NAME = "mediqa_rqe_source"

    def _info(self):
        if self.config.schema == "source":
            features = datasets.Features(
                {
                    "pid": datasets.Value("string"),
                    "value": datasets.Value("string"),
                    "chq": datasets.Value("string"),
                    "faq": datasets.Value("string"),
                }
            )
        elif self.config.schema == "bigbio_pairs":
            features = pairs_features

        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=features,
            homepage=_HOMEPAGE,
            license=str(_LICENSE),
            citation=_CITATION,
        )

    def _split_generators(self, dl_manager):
        data_dir = Path(dl_manager.download_and_extract(_URLS[_DATASETNAME]))

        return [
            datasets.SplitGenerator(
                name=datasets.Split.TRAIN,
                gen_kwargs={
                    "filepath": data_dir
                    / "MEDIQA2019-master/MEDIQA_Task2_RQE/MEDIQA2019-Task2-RQE-TrainingSet-AMIA2016.xml"
                },
            ),
            datasets.SplitGenerator(
                name=datasets.Split.VALIDATION,
                gen_kwargs={
                    "filepath": data_dir
                    / "MEDIQA2019-master/MEDIQA_Task2_RQE/MEDIQA2019-Task2-RQE-ValidationSet-AMIA2016.xml"
                },
            ),
            datasets.SplitGenerator(
                name=datasets.Split.TEST,
                gen_kwargs={
                    "filepath": data_dir
                    / "MEDIQA2019-master/MEDIQA_Task2_RQE/MEDIQA2019-Task2-RQE-TestSet-wLabels.xml"
                },
            ),
        ]

    def _generate_examples(self, filepath: Path) -> Iterator[Tuple[str, Dict]]:
        dom = ET.parse(filepath).getroot()
        for row in dom.iterfind("pair"):
            pid = row.attrib["pid"]
            value = row.attrib["value"]
            chq = row.find("chq").text.strip()
            faq = row.find("faq").text.strip()

            if self.config.schema == "source":
                yield pid, {"pid": pid, "value": value, "chq": chq, "faq": faq}
            elif self.config.schema == "bigbio_pairs":
                yield pid, {
                    "id": pid,
                    "document_id": pid,
                    "text_1": chq,
                    "text_2": faq,
                    "label": value,
                }