Datasets:

Modalities:
Text
Languages:
English
Size:
< 1K
Libraries:
Datasets
License:
gabrielaltay commited on
Commit
1660668
·
1 Parent(s): 2606565

upload hubscripts/mlee_hub.py to hub from bigbio repo

Browse files
Files changed (1) hide show
  1. mlee.py +279 -0
mlee.py ADDED
@@ -0,0 +1,279 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+
16
+ """
17
+ MLEE is an event extraction corpus consisting of manually annotated abstracts of papers
18
+ on angiogenesis. It contains annotations for entities, relations, events and coreferences
19
+ The annotations span molecular, cellular, tissue, and organ-level processes.
20
+ """
21
+ from pathlib import Path
22
+ from typing import Dict, List
23
+
24
+ import datasets
25
+
26
+ from .bigbiohub import kb_features
27
+ from .bigbiohub import BigBioConfig
28
+ from .bigbiohub import Tasks
29
+
30
+ _SOURCE_VIEW_NAME = "source"
31
+ _UNIFIED_VIEW_NAME = "bigbio"
32
+
33
+ _LANGUAGES = ['English']
34
+ _PUBMED = True
35
+ _LOCAL = False
36
+ _CITATION = """\
37
+ @article{pyysalo2012event,
38
+ title={Event extraction across multiple levels of biological organization},
39
+ author={Pyysalo, Sampo and Ohta, Tomoko and Miwa, Makoto and Cho, Han-Cheol and Tsujii, Jun'ichi and Ananiadou, Sophia},
40
+ journal={Bioinformatics},
41
+ volume={28},
42
+ number={18},
43
+ pages={i575--i581},
44
+ year={2012},
45
+ publisher={Oxford University Press}
46
+ }
47
+ """
48
+
49
+ _DESCRIPTION = """\
50
+ MLEE is an event extraction corpus consisting of manually annotated abstracts of papers
51
+ on angiogenesis. It contains annotations for entities, relations, events and coreferences
52
+ The annotations span molecular, cellular, tissue, and organ-level processes.
53
+ """
54
+
55
+ _DATASETNAME = "mlee"
56
+ _DISPLAYNAME = "MLEE"
57
+
58
+ _HOMEPAGE = "http://www.nactem.ac.uk/MLEE/"
59
+
60
+ _LICENSE = 'Creative Commons Attribution Non Commercial Share Alike 3.0 Unported'
61
+ _URLs = {
62
+ "source": "http://www.nactem.ac.uk/MLEE/MLEE-1.0.2-rev1.tar.gz",
63
+ "bigbio_kb": "http://www.nactem.ac.uk/MLEE/MLEE-1.0.2-rev1.tar.gz",
64
+ }
65
+
66
+ _SUPPORTED_TASKS = [
67
+ Tasks.EVENT_EXTRACTION,
68
+ Tasks.NAMED_ENTITY_RECOGNITION,
69
+ Tasks.RELATION_EXTRACTION,
70
+ Tasks.COREFERENCE_RESOLUTION,
71
+ ]
72
+ _SOURCE_VERSION = "1.0.0"
73
+ _BIGBIO_VERSION = "1.0.0"
74
+
75
+
76
+ class MLEE(datasets.GeneratorBasedBuilder):
77
+ """Write a short docstring documenting what this dataset is"""
78
+
79
+ SOURCE_VERSION = datasets.Version(_SOURCE_VERSION)
80
+ BIGBIO_VERSION = datasets.Version(_BIGBIO_VERSION)
81
+
82
+ BUILDER_CONFIGS = [
83
+ BigBioConfig(
84
+ name="mlee_source",
85
+ version=SOURCE_VERSION,
86
+ description="MLEE source schema",
87
+ schema="source",
88
+ subset_id="mlee",
89
+ ),
90
+ BigBioConfig(
91
+ name="mlee_bigbio_kb",
92
+ version=SOURCE_VERSION,
93
+ description="MLEE BigBio schema",
94
+ schema="bigbio_kb",
95
+ subset_id="mlee",
96
+ ),
97
+ ]
98
+
99
+ DEFAULT_CONFIG_NAME = "mlee_source"
100
+
101
+ _ROLE_MAPPING = {
102
+ "Theme2": "Theme",
103
+ "Instrument2": "Instrument",
104
+ "Participant2": "Participant",
105
+ "Participant3": "Participant",
106
+ "Participant4": "Participant",
107
+ }
108
+
109
+ def _info(self):
110
+ """
111
+ Provide information about MLEE:
112
+ - `features` defines the schema of the parsed data set. The schema depends on the
113
+ chosen `config`: If it is `_SOURCE_VIEW_NAME` the schema is the schema of the
114
+ original data. If `config` is `_UNIFIED_VIEW_NAME`, then the schema is the
115
+ canonical KB-task schema defined in `biomedical/schemas/kb.py`.
116
+
117
+ """
118
+ if self.config.schema == "source":
119
+ features = datasets.Features(
120
+ {
121
+ "id": datasets.Value("string"),
122
+ "document_id": datasets.Value("string"),
123
+ "text": datasets.Value("string"),
124
+ "text_bound_annotations": [ # T line in brat, e.g. type or event trigger
125
+ {
126
+ "offsets": datasets.Sequence([datasets.Value("int32")]),
127
+ "text": datasets.Sequence(datasets.Value("string")),
128
+ "type": datasets.Value("string"),
129
+ "id": datasets.Value("string"),
130
+ }
131
+ ],
132
+ "events": [ # E line in brat
133
+ {
134
+ "trigger": datasets.Value(
135
+ "string"
136
+ ), # refers to the text_bound_annotation of the trigger,
137
+ "id": datasets.Value("string"),
138
+ "type": datasets.Value("string"),
139
+ "arguments": datasets.Sequence(
140
+ {
141
+ "role": datasets.Value("string"),
142
+ "ref_id": datasets.Value("string"),
143
+ }
144
+ ),
145
+ }
146
+ ],
147
+ "relations": [ # R line in brat
148
+ {
149
+ "id": datasets.Value("string"),
150
+ "head": {
151
+ "ref_id": datasets.Value("string"),
152
+ "role": datasets.Value("string"),
153
+ },
154
+ "tail": {
155
+ "ref_id": datasets.Value("string"),
156
+ "role": datasets.Value("string"),
157
+ },
158
+ "type": datasets.Value("string"),
159
+ }
160
+ ],
161
+ "equivalences": [ # Equiv line in brat
162
+ {
163
+ "id": datasets.Value("string"),
164
+ "ref_ids": datasets.Sequence(datasets.Value("string")),
165
+ }
166
+ ],
167
+ "attributes": [ # M or A lines in brat
168
+ {
169
+ "id": datasets.Value("string"),
170
+ "type": datasets.Value("string"),
171
+ "ref_id": datasets.Value("string"),
172
+ "value": datasets.Value("string"),
173
+ }
174
+ ],
175
+ "normalizations": [ # N lines in brat
176
+ {
177
+ "id": datasets.Value("string"),
178
+ "type": datasets.Value("string"),
179
+ "ref_id": datasets.Value("string"),
180
+ "resource_name": datasets.Value(
181
+ "string"
182
+ ), # Name of the resource, e.g. "Wikipedia"
183
+ "cuid": datasets.Value(
184
+ "string"
185
+ ), # ID in the resource, e.g. 534366
186
+ "text": datasets.Value(
187
+ "string"
188
+ ), # Human readable description/name of the entity, e.g. "Barack Obama"
189
+ }
190
+ ],
191
+ },
192
+ )
193
+ elif self.config.schema == "bigbio_kb":
194
+ features = kb_features
195
+
196
+ return datasets.DatasetInfo(
197
+ # This is the description that will appear on the datasets page.
198
+ description=_DESCRIPTION,
199
+ features=features,
200
+ # If there's a common (input, target) tuple from the features, uncomment supervised_keys line below and
201
+ # specify them. They'll be used if as_supervised=True in builder.as_dataset.
202
+ # This is not applicable for MLEE.
203
+ # supervised_keys=("sentence", "label"),
204
+ # Homepage of the dataset for documentation
205
+ homepage=_HOMEPAGE,
206
+ # License for the dataset if available
207
+ license=str(_LICENSE),
208
+ # Citation for the dataset
209
+ citation=_CITATION,
210
+ )
211
+
212
+ def _split_generators(
213
+ self, dl_manager: datasets.DownloadManager
214
+ ) -> List[datasets.SplitGenerator]:
215
+ """
216
+ Create the three splits provided by MLEE: train, validation and test.
217
+
218
+ Each split is created by instantiating a `datasets.SplitGenerator`, which will
219
+ call `this._generate_examples` with the keyword arguments in `gen_kwargs`.
220
+ """
221
+
222
+ my_urls = _URLs[self.config.schema]
223
+ data_dir = Path(dl_manager.download_and_extract(my_urls))
224
+ data_files = {
225
+ "train": data_dir
226
+ / "MLEE-1.0.2-rev1"
227
+ / "standoff"
228
+ / "development"
229
+ / "train",
230
+ "dev": data_dir / "MLEE-1.0.2-rev1" / "standoff" / "development" / "test",
231
+ "test": data_dir / "MLEE-1.0.2-rev1" / "standoff" / "test" / "test",
232
+ }
233
+
234
+ return [
235
+ datasets.SplitGenerator(
236
+ name=datasets.Split.TRAIN,
237
+ gen_kwargs={"data_files": data_files["train"]},
238
+ ),
239
+ datasets.SplitGenerator(
240
+ name=datasets.Split.VALIDATION,
241
+ gen_kwargs={"data_files": data_files["dev"]},
242
+ ),
243
+ datasets.SplitGenerator(
244
+ name=datasets.Split.TEST,
245
+ gen_kwargs={"data_files": data_files["test"]},
246
+ ),
247
+ ]
248
+
249
+ def _standardize_arguments_roles(self, kb_example: Dict) -> Dict:
250
+
251
+ for event in kb_example["events"]:
252
+ for argument in event["arguments"]:
253
+ role = argument["role"]
254
+ argument["role"] = self._ROLE_MAPPING.get(role, role)
255
+
256
+ return kb_example
257
+
258
+ def _generate_examples(self, data_files: Path):
259
+ """
260
+ Yield one `(guid, example)` pair per abstract in MLEE.
261
+ The contents of `example` will depend on the chosen configuration.
262
+ """
263
+ if self.config.schema == "source":
264
+ txt_files = list(data_files.glob("*txt"))
265
+ for guid, txt_file in enumerate(txt_files):
266
+ example = parsing.parse_brat_file(txt_file)
267
+ example["id"] = str(guid)
268
+ yield guid, example
269
+ elif self.config.schema == "bigbio_kb":
270
+ txt_files = list(data_files.glob("*txt"))
271
+ for guid, txt_file in enumerate(txt_files):
272
+ example = parsing.brat_parse_to_bigbio_kb(
273
+ parsing.parse_brat_file(txt_file)
274
+ )
275
+ example = self._standardize_arguments_roles(example)
276
+ example["id"] = str(guid)
277
+ yield guid, example
278
+ else:
279
+ raise ValueError(f"Invalid config: {self.config.name}")