|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import os |
|
from pathlib import Path |
|
from typing import Any, Dict, List, Tuple |
|
|
|
import datasets |
|
|
|
from .bigbiohub import BigBioConfig, Tasks, kb_features |
|
|
|
_LANGUAGES = ["Romanian"] |
|
_PUBMED = False |
|
_LOCAL = False |
|
|
|
_CITATION = """\ |
|
@inproceedings{, |
|
title = {{M}o{NER}o: a Biomedical Gold Standard Corpus for the {R}omanian Language}, |
|
author = {Mitrofan, Maria and Barbu Mititelu, Verginica and Mitrofan, Grigorina}, |
|
booktitle = "Proceedings of the 18th BioNLP Workshop and Shared Task", |
|
month = aug, |
|
year = "2019", |
|
address = "Florence, Italy", |
|
publisher = "Association for Computational Linguistics", |
|
url = "https://aclanthology.org/W19-5008", |
|
doi = "10.18653/v1/W19-5008", |
|
pages = "71--79", |
|
biburl = {https://aclanthology.org/W19-5008.bib}, |
|
bibsource = {https://aclanthology.org/W19-5008/} |
|
} |
|
""" |
|
|
|
_DATASETNAME = "monero" |
|
_DISPLAYNAME = "MoNERo" |
|
|
|
_DESCRIPTION = """\ |
|
MoNERo: a Biomedical Gold Standard Corpus for the Romanian Language for part of speech tagging and named \ |
|
entity recognition. |
|
""" |
|
|
|
_HOMEPAGE = "https://www.racai.ro/en/tools/text/" |
|
_LICENSE = "CC_BY_SA_4p0" |
|
|
|
_URLS = { |
|
|
|
|
|
|
|
|
|
|
|
|
|
_DATASETNAME: "https://github.com/bigscience-workshop/biomedical/files/8550757/MoNERo.tar.gz", |
|
} |
|
|
|
_SUPPORTED_TASKS = [Tasks.NAMED_ENTITY_RECOGNITION] |
|
|
|
_SOURCE_VERSION = "1.0.0" |
|
_BIGBIO_VERSION = "1.0.0" |
|
|
|
|
|
class MoneroDataset(datasets.GeneratorBasedBuilder): |
|
"""MoNERo: a Biomedical Gold Standard Corpus for the Romanian Language for part of speech tagging |
|
and named entity recognition.""" |
|
|
|
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION) |
|
BIGBIO_VERSION = datasets.Version(_BIGBIO_VERSION) |
|
|
|
BUILDER_CONFIGS = [ |
|
BigBioConfig( |
|
name=f"{_DATASETNAME}_source", |
|
version=SOURCE_VERSION, |
|
description=f"{_DATASETNAME} source schema", |
|
schema="source", |
|
subset_id=f"{_DATASETNAME}", |
|
), |
|
BigBioConfig( |
|
name=f"{_DATASETNAME}_bigbio_kb", |
|
version=BIGBIO_VERSION, |
|
description=f"{_DATASETNAME} BigBio schema", |
|
schema="bigbio_kb", |
|
subset_id=f"{_DATASETNAME}", |
|
), |
|
] |
|
|
|
DEFAULT_CONFIG_NAME = f"{_DATASETNAME}_source" |
|
|
|
def _info(self) -> datasets.DatasetInfo: |
|
if self.config.schema == "source": |
|
features = datasets.Features( |
|
{ |
|
"doc_id": datasets.Value("string"), |
|
"tokens": [datasets.Value("string")], |
|
"lemmas": [datasets.Value("string")], |
|
"ner_tags": [datasets.Value("string")], |
|
"pos_tags": [datasets.Value("string")], |
|
} |
|
) |
|
|
|
elif self.config.schema == "bigbio_kb": |
|
features = kb_features |
|
else: |
|
raise NotImplementedError(f"Schema {self.config.schema} not supported") |
|
|
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=features, |
|
homepage=_HOMEPAGE, |
|
license=_LICENSE, |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager) -> List[datasets.SplitGenerator]: |
|
"""Returns SplitGenerators.""" |
|
urls = _URLS[_DATASETNAME] |
|
data_dir = dl_manager.download_and_extract(urls) |
|
|
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={ |
|
"filepath": Path(os.path.join(data_dir, "MoNERo", "MoNERo.txt")), |
|
"split": "train", |
|
}, |
|
), |
|
] + [ |
|
datasets.SplitGenerator( |
|
name=split, |
|
gen_kwargs={ |
|
"filepath": Path(os.path.join(data_dir, "MoNERo", f"MoNERo_{split}.txt")), |
|
"split": split, |
|
}, |
|
) |
|
for split in ["cardiology", "endocrinology", "diabetes"] |
|
] |
|
|
|
def _generate_examples(self, filepath: Path, split: str) -> Tuple[int, Dict]: |
|
"""Yields examples as (key, example) tuples.""" |
|
if self.config.schema == "source": |
|
for key, example in self._read_example_from_file(filepath): |
|
yield key, example |
|
|
|
elif self.config.schema == "bigbio_kb": |
|
for key, example in self._read_example_from_file_in_kb_schema(filepath): |
|
yield key, example |
|
|
|
def _read_example_from_file(self, filepath: Path) -> Tuple[str, Dict]: |
|
"""Read examples from the given file in source schema""" |
|
with filepath.open("r", encoding="utf8") as fp: |
|
sequences = fp.read().split("\n\n") |
|
|
|
for i, seq in enumerate(sequences): |
|
key = f"docid-{i}" |
|
seq = [line.rstrip().split("\t") for line in seq.rstrip().splitlines()] |
|
|
|
|
|
seq = [line for line in seq if len(line) == 4] |
|
tokens, lemmas, ner_tags, pos_tags = zip(*seq) |
|
example = { |
|
"doc_id": key, |
|
"tokens": tokens, |
|
"lemmas": lemmas, |
|
"ner_tags": ner_tags, |
|
"pos_tags": pos_tags, |
|
} |
|
yield key, example |
|
|
|
@staticmethod |
|
def _assign_offsets(tokens: List[str]) -> List[Tuple[int, int]]: |
|
"""Compute token offsets from list of tokens""" |
|
|
|
offsets = [] |
|
start = 0 |
|
for t in tokens: |
|
s = start |
|
e = s + len(t) |
|
offsets.append((s, e)) |
|
start = e + 1 |
|
|
|
return offsets |
|
|
|
@staticmethod |
|
def _extract_entities(ner_tags: List[str]) -> List[Dict]: |
|
"""Extract the entity token offsets / indices given the NER tags. |
|
|
|
Note: The dataset contains discontinuous entities, unfortunately, in some cases it's not transparent to |
|
which entity a part (i.e., an I-Tag without having a B-Tag before) should be linked. In this implementation |
|
we append the entity part to previous entity of that type. If there is no previous entity we construct |
|
a new entity from the part. |
|
""" |
|
ner_tags = tuple(ner_tags) + ("O",) |
|
entities = [] |
|
stack = [] |
|
is_discontinuation = False |
|
|
|
for index, ner_tag in enumerate(ner_tags): |
|
if stack and (ner_tag == "O" or ner_tag.startswith("B-")): |
|
entity_type, start_index = stack[0] |
|
entity_type, end_index = stack[-1] |
|
|
|
if not is_discontinuation: |
|
|
|
entities.append({"type": entity_type, "offsets": [(start_index, end_index)]}) |
|
else: |
|
|
|
prev_entity = None |
|
for i in range(len(entities) - 1, 0, -1): |
|
if entities[i]["type"] == entity_type: |
|
prev_entity = entities[i] |
|
break |
|
|
|
if prev_entity: |
|
prev_entity["offsets"].append((start_index, end_index)) |
|
else: |
|
|
|
entities.append({"type": entity_type, "offsets": [(start_index, end_index)]}) |
|
|
|
stack = [] |
|
is_discontinuation = False |
|
|
|
if ner_tag.startswith("I-") and len(stack) == 0 and len(entities) > 0: |
|
|
|
is_discontinuation = True |
|
|
|
if ner_tag.startswith(("B-", "I-")): |
|
_, entity_type = ner_tag.split("-", 1) |
|
stack.append((entity_type, index)) |
|
|
|
return entities |
|
|
|
def _parse_example_to_kb_schema(self, example: Dict) -> Dict[str, Any]: |
|
"""Maps a source example to BigBio kb schema""" |
|
|
|
text = " ".join(example["tokens"]) |
|
doc_id = example["doc_id"] |
|
passages = [ |
|
{ |
|
"id": f"{doc_id}-P0", |
|
"type": "abstract", |
|
"text": [text], |
|
"offsets": [[0, len(text)]], |
|
} |
|
] |
|
|
|
offsets = self._assign_offsets(example["tokens"]) |
|
entities_with_token_indices = self._extract_entities(example["ner_tags"]) |
|
|
|
entities = [] |
|
for i, entity_type_and_token_indices in enumerate(entities_with_token_indices): |
|
entity_texts = [] |
|
entity_offsets = [] |
|
|
|
for start_token, end_token in entity_type_and_token_indices["offsets"]: |
|
start_offset, end_offset = offsets[start_token][0], offsets[end_token][1] |
|
entity_offsets.append((start_offset, end_offset)) |
|
entity_texts.append(text[start_offset:end_offset]) |
|
|
|
entity = { |
|
"id": f"{doc_id}-E{i}", |
|
"text": entity_texts, |
|
"offsets": entity_offsets, |
|
"type": entity_type_and_token_indices["type"], |
|
"normalized": [], |
|
} |
|
entities.append(entity) |
|
|
|
data = { |
|
"id": doc_id, |
|
"document_id": doc_id, |
|
"passages": passages, |
|
"entities": entities, |
|
"relations": [], |
|
"events": [], |
|
"coreferences": [], |
|
} |
|
return data |
|
|
|
def _read_example_from_file_in_kb_schema(self, filepath: Path) -> Tuple[str, Dict]: |
|
for key, example in self._read_example_from_file(filepath): |
|
example = self._parse_example_to_kb_schema(example) |
|
yield key, example |
|
|