|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
""" |
|
A dataset loader for the MuchMore Springer Bilingual Corpus |
|
|
|
homepage |
|
|
|
* https://muchmore.dfki.de/resources1.htm |
|
|
|
description of annotation format |
|
|
|
* https://muchmore.dfki.de/pubs/D4.1.pdf |
|
|
|
Four files are distributed |
|
|
|
* springer_english_train_plain.tar.gz (english plain text of abstracts) |
|
* springer_german_train_plain.tar.gz (german plain text of abstracts) |
|
* springer_english_train_V4.2.tar.gz (annotated xml in english) |
|
* springer_german_train_V4.2.tar.gz (annotated xml in german) |
|
|
|
Each tar file has one member file per abstract. |
|
There are keys to join the english and german files |
|
but there is not a 1-1 mapping between them (i.e. some |
|
english files have no german counterpart and some german |
|
files have no english counterpart). However, there is a 1-1 |
|
mapping between plain text and annotations for a given language |
|
(i.e. an abstract in springer_english_train_plain.tar.gz will |
|
also be found in springer_english_train_V4.2.tar.gz) |
|
|
|
Counts, |
|
|
|
* 15,631 total abstracts |
|
* 7,823 english abstracts |
|
* 7,808 german abstracts |
|
* 6,374 matched (en/de) abstracts |
|
* 1,449 english abstracts with no german |
|
* 1,434 german abstracts with no english |
|
|
|
Notes |
|
|
|
* Arthroskopie.00130237.eng.abstr.chunkmorph.annotated.xml seems to be empty |
|
|
|
|
|
* entity spans can overlap. an example from the first sample: |
|
|
|
{'id': 'Arthroskopie.00130003.eng.abstr-s1-t1', |
|
'type': 'umlsterm', |
|
'text': ['posterior'], |
|
'offsets': [[4, 13]], |
|
'normalized': [{'db_name': 'UMLS', 'db_id': 'C0032009'}]}, |
|
{'id': 'Arthroskopie.00130003.eng.abstr-s1-t8', |
|
'type': 'umlsterm', |
|
'text': ['posterior cruciate ligament'], |
|
'offsets': [[4, 31]], |
|
'normalized': [{'db_name': 'UMLS', 'db_id': 'C0080039'}]}, |
|
{'id': 'Arthroskopie.00130003.eng.abstr-s1-t2', |
|
'type': 'umlsterm', |
|
'text': ['ligament'], |
|
'offsets': [[23, 31]], |
|
'normalized': [{'db_name': 'UMLS', 'db_id': 'C0023685'}, |
|
{'db_name': 'UMLS', 'db_id': 'C0023686'}]}, |
|
|
|
|
|
* semantic relations are defined beween concepts but entities can |
|
have multiple concpets associated with them. in the bigbio |
|
schema we skip relations between multiple concept of the |
|
same entity. an example of a relation that is kept from the |
|
source schema is below, |
|
|
|
In [35]: dsd['train'][0]['sentences'][0]['tokens'] |
|
Out[35]: |
|
[{'id': 'w1', 'pos': 'DT', 'lemma': 'the', 'text': 'The'}, |
|
{'id': 'w2', 'pos': 'JJ', 'lemma': 'posterior', 'text': 'posterior'}, |
|
{'id': 'w3', 'pos': 'JJ', 'lemma': 'cruciate', 'text': 'cruciate'}, |
|
{'id': 'w4', 'pos': 'NN', 'lemma': 'ligament', 'text': 'ligament'}, |
|
{'id': 'w5', 'pos': 'PUNCT', 'lemma': None, 'text': '('}, |
|
{'id': 'w6', 'pos': 'NN', 'lemma': None, 'text': 'PCL'}, |
|
{'id': 'w7', 'pos': 'PUNCT', 'lemma': None, 'text': ')'}, |
|
{'id': 'w8', 'pos': 'VBZ', 'lemma': 'be', 'text': 'is'}, |
|
{'id': 'w9', 'pos': 'DT', 'lemma': 'the', 'text': 'the'}, |
|
{'id': 'w10', 'pos': 'JJS', 'lemma': 'strong', 'text': 'strongest'}, |
|
{'id': 'w11', 'pos': 'NN', 'lemma': 'ligament', 'text': 'ligament'}, |
|
{'id': 'w12', 'pos': 'IN', 'lemma': 'of', 'text': 'of'}, |
|
{'id': 'w13', 'pos': 'DT', 'lemma': 'the', 'text': 'the'}, |
|
{'id': 'w14', 'pos': 'JJ', 'lemma': 'human', 'text': 'human'}, |
|
{'id': 'w15', 'pos': 'NN', 'lemma': 'knee', 'text': 'knee'}, |
|
{'id': 'w16', 'pos': 'JJ', 'lemma': 'joint', 'text': 'joint'}, |
|
{'id': 'w17', 'pos': 'PUNCT', 'lemma': None, 'text': '.'}] |
|
|
|
|
|
In [36]: dsd['train'][0]['sentences'][0]['semrels'][0] |
|
Out[36]: {'id': 'r1', 'term1': 't3.1', 'term2': 't6.1', 'reltype': 'surrounds'} |
|
|
|
In [37]: dsd['train'][0]['sentences'][0]['umlsterms'][2] |
|
Out[37]: |
|
{'id': 't3', |
|
'from': 'w11', |
|
'to': 'w11', |
|
'concepts': [{'id': 't3.1', |
|
'cui': 'C0023685', |
|
'preferred': 'Ligaments', |
|
'tui': 'T024', |
|
'mshs': [{'code': 'A2.513'}]}, |
|
{'id': 't3.2', |
|
'cui': 'C0023686', |
|
'preferred': 'Articular ligaments', |
|
'tui': 'T023', |
|
'mshs': [{'code': 'A2.513.514'}, {'code': 'A2.835.583.512'}]}]} |
|
|
|
In [38]: dsd['train'][0]['sentences'][0]['umlsterms'][5] |
|
Out[38]: |
|
{'id': 't6', |
|
'from': 'w16', |
|
'to': 'w16', |
|
'concepts': [{'id': 't6.1', |
|
'cui': 'C0022417', |
|
'preferred': 'Joints', |
|
'tui': 'T030', |
|
'mshs': [{'code': 'A2.835.583'}]}]} |
|
|
|
""" |
|
|
|
import itertools |
|
import os |
|
import re |
|
import tarfile |
|
import xml.etree.ElementTree as ET |
|
from collections import defaultdict |
|
from typing import Dict, List |
|
from xml.etree.ElementTree import Element |
|
|
|
import datasets |
|
from datasets import Features, Value |
|
|
|
|
|
|
|
|
|
|
|
from .bigbiohub import kb_features |
|
from .bigbiohub import BigBioConfig |
|
from .bigbiohub import Tasks |
|
|
|
_LANGUAGES = ['English', 'German'] |
|
_PUBMED = True |
|
_LOCAL = False |
|
_CITATION = """\ |
|
@inproceedings{buitelaar2003multi, |
|
title={A multi-layered, xml-based approach to the integration of linguistic and semantic annotations}, |
|
author={Buitelaar, Paul and Declerck, Thierry and Sacaleanu, Bogdan and Vintar, {\v{S}}pela and Raileanu, Diana and Crispi, Claudia}, |
|
booktitle={Proceedings of EACL 2003 Workshop on Language Technology and the Semantic Web (NLPXML'03), Budapest, Hungary}, |
|
year={2003} |
|
} |
|
""" |
|
|
|
_DESCRIPTION = """\ |
|
The corpus used in the MuchMore project is a parallel corpus of English-German scientific |
|
medical abstracts obtained from the Springer Link web site. The corpus consists |
|
approximately of 1 million tokens for each language. Abstracts are from 41 medical |
|
journals, each of which constitutes a relatively homogeneous medical sub-domain (e.g. |
|
Neurology, Radiology, etc.). The corpus of downloaded HTML documents is normalized in |
|
various ways, in order to produce a clean, plain text version, consisting of a title, abstract |
|
and keywords. Additionally, the corpus was aligned on the sentence level. |
|
|
|
Automatic (!) annotation includes: Part-of-Speech; Morphology (inflection and |
|
decomposition); Chunks; Semantic Classes (UMLS: Unified Medical Language System, |
|
MeSH: Medical Subject Headings, EuroWordNet); Semantic Relations from UMLS. |
|
""" |
|
|
|
_DATASETNAME = "muchmore" |
|
_DISPLAYNAME = "MuchMore" |
|
|
|
_HOMEPAGE = "https://muchmore.dfki.de/resources1.htm" |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
_LICENSE = 'License information unavailable' |
|
_URLs = { |
|
"muchmore_source": [ |
|
"https://muchmore.dfki.de/pubs/springer_english_train_plain.tar.gz", |
|
"https://muchmore.dfki.de/pubs/springer_english_train_V4.2.tar.gz", |
|
"https://muchmore.dfki.de/pubs/springer_german_train_plain.tar.gz", |
|
"https://muchmore.dfki.de/pubs/springer_german_train_V4.2.tar.gz", |
|
], |
|
"muchmore_bigbio_kb": [ |
|
"https://muchmore.dfki.de/pubs/springer_english_train_V4.2.tar.gz", |
|
"https://muchmore.dfki.de/pubs/springer_german_train_V4.2.tar.gz", |
|
], |
|
"muchmore_en_bigbio_kb": "https://muchmore.dfki.de/pubs/springer_english_train_V4.2.tar.gz", |
|
"muchmore_de_bigbio_kb": "https://muchmore.dfki.de/pubs/springer_german_train_V4.2.tar.gz", |
|
"plain": [ |
|
"https://muchmore.dfki.de/pubs/springer_english_train_plain.tar.gz", |
|
"https://muchmore.dfki.de/pubs/springer_german_train_plain.tar.gz", |
|
], |
|
"plain_en": "https://muchmore.dfki.de/pubs/springer_english_train_plain.tar.gz", |
|
"plain_de": "https://muchmore.dfki.de/pubs/springer_german_train_plain.tar.gz", |
|
"muchmore_bigbio_t2t": [ |
|
"https://muchmore.dfki.de/pubs/springer_english_train_plain.tar.gz", |
|
"https://muchmore.dfki.de/pubs/springer_german_train_plain.tar.gz", |
|
], |
|
} |
|
|
|
|
|
_SOURCE_VERSION = "4.2.0" |
|
_BIGBIO_VERSION = "1.0.0" |
|
_SUPPORTED_TASKS = [ |
|
Tasks.TRANSLATION, |
|
Tasks.NAMED_ENTITY_RECOGNITION, |
|
Tasks.NAMED_ENTITY_DISAMBIGUATION, |
|
Tasks.RELATION_EXTRACTION, |
|
] |
|
|
|
NATIVE_ENCODING = "ISO-8859-1" |
|
FILE_NAME_PATTERN = r"^(.+?)\.(eng|ger)\.abstr(\.chunkmorph\.annotated\.xml)?$" |
|
LANG_MAP = {"eng": "en", "ger": "de"} |
|
|
|
|
|
class MuchMoreDataset(datasets.GeneratorBasedBuilder): |
|
"""MuchMore Springer Bilingual Corpus""" |
|
|
|
DEFAULT_CONFIG_NAME = "muchmore_source" |
|
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION) |
|
BIGBIO_VERSION = datasets.Version(_BIGBIO_VERSION) |
|
|
|
BUILDER_CONFIGS = [ |
|
BigBioConfig( |
|
name="muchmore_source", |
|
version=SOURCE_VERSION, |
|
description="MuchMore source schema", |
|
schema="source", |
|
subset_id="muchmore", |
|
), |
|
BigBioConfig( |
|
name="muchmore_bigbio_kb", |
|
version=BIGBIO_VERSION, |
|
description="MuchMore simplified BigBio kb schema", |
|
schema="bigbio_kb", |
|
subset_id="muchmore", |
|
), |
|
BigBioConfig( |
|
name="muchmore_en_bigbio_kb", |
|
version=BIGBIO_VERSION, |
|
description="MuchMore simplified BigBio kb schema", |
|
schema="bigbio_kb", |
|
subset_id="muchmore_en", |
|
), |
|
BigBioConfig( |
|
name="muchmore_de_bigbio_kb", |
|
version=BIGBIO_VERSION, |
|
description="MuchMore simplified BigBio kb schema", |
|
schema="bigbio_kb", |
|
subset_id="muchmore_de", |
|
), |
|
BigBioConfig( |
|
name="muchmore_bigbio_t2t", |
|
version=BIGBIO_VERSION, |
|
description="MuchMore simplified BigBio translation schema", |
|
schema="bigbio_t2t", |
|
subset_id="muchmore", |
|
), |
|
] |
|
|
|
|
|
def _info(self): |
|
|
|
if self.config.schema == "source": |
|
features = Features( |
|
{ |
|
"sample_id": Value("string"), |
|
"corresp": Value("string"), |
|
"language": Value("string"), |
|
"abstract": Value("string"), |
|
"sentences": [ |
|
{ |
|
"id": Value("string"), |
|
"corresp": Value("string"), |
|
"umlsterms": [ |
|
{ |
|
"id": Value("string"), |
|
"from": Value("string"), |
|
"to": Value("string"), |
|
"concepts": [ |
|
{ |
|
"id": Value("string"), |
|
"cui": Value("string"), |
|
"preferred": Value("string"), |
|
"tui": Value("string"), |
|
"mshs": [ |
|
{ |
|
"code": Value("string"), |
|
} |
|
], |
|
} |
|
], |
|
} |
|
], |
|
"ewnterms": [ |
|
{ |
|
"id": Value("string"), |
|
"to": Value("string"), |
|
"from": Value("string"), |
|
"senses": [ |
|
{ |
|
"offset": Value("string"), |
|
} |
|
], |
|
} |
|
], |
|
"semrels": [ |
|
{ |
|
"id": Value("string"), |
|
"term1": Value("string"), |
|
"term2": Value("string"), |
|
"reltype": Value("string"), |
|
} |
|
], |
|
"chunks": [ |
|
{ |
|
"id": Value("string"), |
|
"to": Value("string"), |
|
"from": Value("string"), |
|
"type": Value("string"), |
|
} |
|
], |
|
"tokens": [ |
|
{ |
|
"id": Value("string"), |
|
"pos": Value("string"), |
|
"lemma": Value("string"), |
|
"text": Value("string"), |
|
} |
|
], |
|
} |
|
], |
|
} |
|
) |
|
|
|
elif self.config.schema == "bigbio_kb": |
|
features = kb_features |
|
|
|
elif self.config.name in ("plain", "plain_en", "plain_de"): |
|
features = Features( |
|
{ |
|
"sample_id": Value("string"), |
|
"sample_id_prefix": Value("string"), |
|
"language": Value("string"), |
|
"abstract": Value("string"), |
|
} |
|
) |
|
|
|
elif self.config.schema == "bigbio_t2t": |
|
features = text2text_features |
|
|
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=features, |
|
supervised_keys=None, |
|
homepage=_HOMEPAGE, |
|
license=str(_LICENSE), |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
"""Returns SplitGenerators.""" |
|
my_urls = _URLs[self.config.name] |
|
data_dirs = dl_manager.download(my_urls) |
|
|
|
if isinstance(data_dirs, str): |
|
data_dirs = [data_dirs] |
|
|
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={ |
|
"file_names_and_pointers": itertools.chain( |
|
*[dl_manager.iter_archive(data_dir) for data_dir in data_dirs] |
|
), |
|
"split": "train", |
|
}, |
|
), |
|
] |
|
|
|
@staticmethod |
|
def _get_umlsterms_from_xsent(xsent: Element) -> List: |
|
xumlsterms = xsent.find("./umlsterms") |
|
|
|
umlsterms = [] |
|
for xumlsterm in xumlsterms.findall("./umlsterm"): |
|
|
|
concepts = [] |
|
for xconcept in xumlsterm.findall("./concept"): |
|
|
|
mshs = [ |
|
{"code": xmsh.get("code")} for xmsh in xconcept.findall("./msh") |
|
] |
|
|
|
concept = { |
|
"id": xconcept.get("id"), |
|
"cui": xconcept.get("cui"), |
|
"preferred": xconcept.get("preferred"), |
|
"tui": xconcept.get("tui"), |
|
"mshs": mshs, |
|
} |
|
concepts.append(concept) |
|
|
|
umlsterm = { |
|
"id": xumlsterm.get("id"), |
|
"from": xumlsterm.get("from"), |
|
"to": xumlsterm.get("to"), |
|
"concepts": concepts, |
|
} |
|
umlsterms.append(umlsterm) |
|
|
|
return umlsterms |
|
|
|
@staticmethod |
|
def _get_ewnterms_from_xsent(xsent: Element) -> List: |
|
xewnterms = xsent.find("./ewnterms") |
|
|
|
ewnterms = [] |
|
for xewnterm in xewnterms.findall("./ewnterm"): |
|
|
|
senses = [ |
|
{"offset": xsense.get("offset")} |
|
for xsense in xewnterm.findall("./sense") |
|
] |
|
|
|
ewnterm = { |
|
"id": xewnterm.get("id"), |
|
"from": xewnterm.get("from"), |
|
"to": xewnterm.get("to"), |
|
"senses": senses, |
|
} |
|
ewnterms.append(ewnterm) |
|
|
|
return ewnterms |
|
|
|
@staticmethod |
|
def _get_semrels_from_xsent(xsent: Element) -> List[Dict[str, str]]: |
|
xsemrels = xsent.find("./semrels") |
|
return [ |
|
{ |
|
"id": xsemrel.get("id"), |
|
"term1": xsemrel.get("term1"), |
|
"term2": xsemrel.get("term2"), |
|
"reltype": xsemrel.get("reltype"), |
|
} |
|
for xsemrel in xsemrels.findall("./semrel") |
|
] |
|
|
|
@staticmethod |
|
def _get_chunks_from_xsent(xsent: Element) -> List[Dict[str, str]]: |
|
xchunks = xsent.find("./chunks") |
|
return [ |
|
{ |
|
"id": xchunk.get("id"), |
|
"to": xchunk.get("to"), |
|
"from": xchunk.get("from"), |
|
"type": xchunk.get("type"), |
|
} |
|
for xchunk in xchunks.findall("./chunk") |
|
] |
|
|
|
@staticmethod |
|
def _get_tokens_from_xsent(xsent: Element) -> List[Dict[str, str]]: |
|
xtext = xsent.find("./text") |
|
return [ |
|
{ |
|
"id": xtoken.get("id"), |
|
"pos": xtoken.get("pos"), |
|
"lemma": xtoken.get("lemma"), |
|
"text": xtoken.text, |
|
} |
|
for xtoken in xtext.findall("./token") |
|
] |
|
|
|
def _generate_original_examples(self, file_names_and_pointers): |
|
"""Generate something close to the original dataset. |
|
|
|
This will yield one sample per abstract with the plaintext |
|
and the annotations combined into one object. If an abstract |
|
is available in both english and german each language version |
|
will be a distinct example. |
|
""" |
|
abstracts = {} |
|
samples = {} |
|
for file_name, fp in file_names_and_pointers: |
|
|
|
if file_name.endswith(".abstr"): |
|
sample_id = file_name |
|
abstracts[sample_id] = fp.read().decode(NATIVE_ENCODING) |
|
|
|
elif file_name.endswith(".abstr.chunkmorph.annotated.xml"): |
|
content_bytes = fp.read() |
|
content_str = content_bytes.decode(NATIVE_ENCODING) |
|
if content_str == "": |
|
continue |
|
|
|
xroot = ET.fromstring(content_str) |
|
|
|
sentences = [] |
|
for xsent in xroot.findall("./"): |
|
sentence = { |
|
"id": xsent.get("id"), |
|
"corresp": xsent.get("corresp"), |
|
"umlsterms": self._get_umlsterms_from_xsent(xsent), |
|
"ewnterms": self._get_ewnterms_from_xsent(xsent), |
|
"semrels": self._get_semrels_from_xsent(xsent), |
|
"chunks": self._get_chunks_from_xsent(xsent), |
|
"tokens": self._get_tokens_from_xsent(xsent), |
|
} |
|
sentences.append(sentence) |
|
|
|
sample_id = xroot.get("id") |
|
samples[sample_id] = { |
|
"sample_id": sample_id, |
|
"corresp": xroot.get("corresp"), |
|
"language": xroot.get("lang"), |
|
"sentences": sentences, |
|
} |
|
|
|
for _id, (sample_id, sample) in enumerate(samples.items()): |
|
sample["abstract"] = abstracts[sample_id] |
|
yield _id, sample |
|
|
|
def _generate_bigbio_kb_examples(self, file_names_and_pointers): |
|
"""Generate big science biomedical kb examples.""" |
|
|
|
def snippets_tokens_from_sents(sentences): |
|
snippets = [] |
|
for sentence in sentences: |
|
snippet = [el["text"] for el in sentence["tokens"]] |
|
snippets.append(snippet) |
|
return snippets |
|
|
|
def sid_to_text_off(sid, snip_txts_lens): |
|
ii_sid = int(sid[1:]) |
|
start = sum(snip_txts_lens[: ii_sid - 1]) + (ii_sid - 1) |
|
end = start + snip_txts_lens[ii_sid - 1] |
|
return start, end |
|
|
|
def sid_wid_to_text_off(sid, wid, snip_txts_lens, snip_toks_lens): |
|
s_start, s_end = sid_to_text_off(sid, snip_txts_lens) |
|
ii_sid = int(sid[1:]) |
|
ii_wid = int(wid[1:]) |
|
w_start = sum(snip_toks_lens[ii_sid - 1][: ii_wid - 1]) + (ii_wid - 1) |
|
start = s_start + w_start |
|
end = start + snip_toks_lens[ii_sid - 1][ii_wid - 1] |
|
return start, end |
|
|
|
for _id, (file_name, fp) in enumerate(file_names_and_pointers): |
|
|
|
content_bytes = fp.read() |
|
content_str = content_bytes.decode(NATIVE_ENCODING) |
|
if content_str == "": |
|
continue |
|
|
|
xroot = ET.fromstring(content_str) |
|
|
|
sentences = [] |
|
for xsent in xroot.findall("./"): |
|
sentence = { |
|
"id": xsent.get("id"), |
|
"corresp": xsent.get("corresp"), |
|
"umlsterms": self._get_umlsterms_from_xsent(xsent), |
|
"ewnterms": self._get_ewnterms_from_xsent(xsent), |
|
"semrels": self._get_semrels_from_xsent(xsent), |
|
"chunks": self._get_chunks_from_xsent(xsent), |
|
"tokens": self._get_tokens_from_xsent(xsent), |
|
} |
|
sentences.append(sentence) |
|
|
|
snip_toks = snippets_tokens_from_sents(sentences) |
|
snip_txts = [" ".join(snip_tok) for snip_tok in snip_toks] |
|
snip_txts_lens = [len(el) for el in snip_txts] |
|
snip_toks_lens = [[len(tok) for tok in snip] for snip in snip_toks] |
|
text = " ".join(snip_txts) |
|
passages = [ |
|
{ |
|
"id": "{}-passage-0".format(xroot.get("id")), |
|
"type": "abstract", |
|
"text": [text], |
|
"offsets": [(0, len(text))], |
|
} |
|
] |
|
|
|
entities = [] |
|
rel_map = {} |
|
for sentence in sentences: |
|
sid = sentence["id"] |
|
ii_sid = int(sid[1:]) |
|
|
|
for umlsterm in sentence["umlsterms"]: |
|
umlsterm_id = umlsterm["id"] |
|
entity_id = f"{sid}-{umlsterm_id}" |
|
wid_from = umlsterm["from"] |
|
wid_to = umlsterm["to"] |
|
ii_wid_from = int(wid_from[1:]) |
|
ii_wid_to = int(wid_to[1:]) |
|
|
|
tok_text = " ".join( |
|
snip_toks[ii_sid - 1][ii_wid_from - 1 : ii_wid_to] |
|
) |
|
w_from_start, w_from_end = sid_wid_to_text_off( |
|
sid, wid_from, snip_txts_lens, snip_toks_lens |
|
) |
|
w_to_start, w_to_end = sid_wid_to_text_off( |
|
sid, wid_to, snip_txts_lens, snip_toks_lens |
|
) |
|
|
|
offsets = [(w_from_start, w_to_end)] |
|
main_text = text[w_from_start:w_to_end] |
|
umls_cuis = [el["cui"] for el in umlsterm["concepts"]] |
|
for concept in umlsterm["concepts"]: |
|
rel_map[concept["id"]] = entity_id |
|
|
|
entity = { |
|
"id": "{}-{}".format(xroot.get("id"), entity_id), |
|
"offsets": offsets, |
|
"text": [tok_text], |
|
"type": "umlsterm", |
|
"normalized": [ |
|
{"db_name": "UMLS", "db_id": cui} for cui in umls_cuis |
|
], |
|
} |
|
entities.append(entity) |
|
|
|
relations = [] |
|
for sentence in sentences: |
|
sid = sentence["id"] |
|
for semrel in sentence["semrels"]: |
|
semrel_id = semrel["id"] |
|
rel_id = "{}-{}-{}-{}".format( |
|
sid, semrel_id, semrel["term1"], semrel["term2"], |
|
) |
|
arg1_id = "{}-{}".format(xroot.get("id"), rel_map[semrel["term1"]]) |
|
arg2_id = "{}-{}".format(xroot.get("id"), rel_map[semrel["term2"]]) |
|
|
|
|
|
|
|
if arg1_id == arg2_id: |
|
continue |
|
relation = { |
|
"id": "{}-{}".format(xroot.get("id"), rel_id), |
|
"type": semrel["reltype"], |
|
"arg1_id": arg1_id, |
|
"arg2_id": arg2_id, |
|
"normalized": [] |
|
} |
|
relations.append(relation) |
|
|
|
yield _id, { |
|
"id": xroot.get("id"), |
|
"document_id": xroot.get("id"), |
|
"passages": passages, |
|
"entities": entities, |
|
"coreferences": [], |
|
"events": [], |
|
"relations": relations, |
|
} |
|
|
|
def _generate_plain_examples(self, file_names_and_pointers): |
|
"""Generate plain text abstract examples.""" |
|
for _id, (file_name, fp) in enumerate(file_names_and_pointers): |
|
match = re.match(FILE_NAME_PATTERN, file_name) |
|
yield _id, { |
|
"sample_id_prefix": match.group(1), |
|
"sample_id": file_name, |
|
"language": LANG_MAP[match.group(2)], |
|
"abstract": fp.read().decode(NATIVE_ENCODING), |
|
} |
|
|
|
def _generate_translation_examples(self, file_names_and_pointers): |
|
sample_map = defaultdict(list) |
|
for file_name, fp in file_names_and_pointers: |
|
if file_name.endswith("eng.abstr"): |
|
language = "en" |
|
elif file_name.endswith("ger.abstr"): |
|
language = "de" |
|
else: |
|
raise ValueError() |
|
sample_id_prefix = re.sub(".(eng|ger).abstr$", "", file_name) |
|
sample_id = file_name |
|
abstract = fp.read().decode(NATIVE_ENCODING) |
|
sample_map[sample_id_prefix].append( |
|
{"language": language, "sample_id": sample_id, "abstract": abstract} |
|
) |
|
|
|
_id = 0 |
|
for sample_id_prefix, sample_pair in sample_map.items(): |
|
if len(sample_pair) != 2: |
|
continue |
|
en_idx = 0 if sample_pair[0]["language"] == "en" else 1 |
|
de_idx = 0 if en_idx == 1 else 1 |
|
yield _id, { |
|
"id": sample_id_prefix, |
|
"document_id": sample_id_prefix, |
|
"text_1": sample_pair[en_idx]["abstract"], |
|
"text_2": sample_pair[de_idx]["abstract"], |
|
"text_1_name": "en", |
|
"text_2_name": "de", |
|
} |
|
_id += 1 |
|
|
|
def _generate_examples(self, file_names_and_pointers, split): |
|
|
|
if self.config.schema == "source": |
|
genny = self._generate_original_examples(file_names_and_pointers) |
|
|
|
elif self.config.schema == "bigbio_kb": |
|
genny = self._generate_bigbio_kb_examples(file_names_and_pointers) |
|
|
|
elif self.config.name in ("plain", "plain_en", "plain_de"): |
|
genny = self._generate_plain_examples(file_names_and_pointers) |
|
|
|
elif self.config.schema == "bigbio_t2t": |
|
genny = self._generate_translation_examples(file_names_and_pointers) |
|
|
|
for _id, sample in genny: |
|
yield _id, sample |
|
|