gabrielaltay
commited on
Commit
•
2e0672f
1
Parent(s):
c5692b6
upload hubscripts/n2c2_2010_hub.py to hub from bigbio repo
Browse files- n2c2_2010.py +609 -0
n2c2_2010.py
ADDED
@@ -0,0 +1,609 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2022 The HuggingFace Datasets Authors and
|
3 |
+
#
|
4 |
+
# * Ayush Singh (singhay)
|
5 |
+
#
|
6 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
7 |
+
# you may not use this file except in compliance with the License.
|
8 |
+
# You may obtain a copy of the License at
|
9 |
+
#
|
10 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
11 |
+
#
|
12 |
+
# Unless required by applicable law or agreed to in writing, software
|
13 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
14 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
15 |
+
# See the License for the specific language governing permissions and
|
16 |
+
# limitations under the License.
|
17 |
+
|
18 |
+
"""
|
19 |
+
A dataset loader for the n2c2 2010 relations dataset.
|
20 |
+
|
21 |
+
The dataset consists of three archive files,
|
22 |
+
├── concept_assertion_relation_training_data.tar.gz
|
23 |
+
├── reference_standard_for_test_data.tar.gz
|
24 |
+
└── test_data.tar.gz
|
25 |
+
|
26 |
+
The individual data files (inside the zip and tar archives) come in 4 types,
|
27 |
+
|
28 |
+
* docs (*.txt files): text of a patient record
|
29 |
+
* concepts (*.con files): entities along with offsets used as input to a named entity recognition model
|
30 |
+
* assertions (*.ast files): entities, offsets and their assertion used as input to a named entity recognition model
|
31 |
+
* relations (*.rel files): pairs of entities related by relation type used as input to a relation extraction model
|
32 |
+
|
33 |
+
|
34 |
+
The files comprising this dataset must be on the users local machine
|
35 |
+
in a single directory that is passed to `datasets.load_dataset` via
|
36 |
+
the `data_dir` kwarg. This loader script will read the archive files
|
37 |
+
directly (i.e. the user should not uncompress, untar or unzip any of
|
38 |
+
the files).
|
39 |
+
|
40 |
+
Data Access from https://portal.dbmi.hms.harvard.edu/projects/n2c2-nlp/
|
41 |
+
"""
|
42 |
+
|
43 |
+
import os
|
44 |
+
import re
|
45 |
+
import tarfile
|
46 |
+
from collections import defaultdict
|
47 |
+
from dataclasses import dataclass
|
48 |
+
from typing import List, Tuple
|
49 |
+
|
50 |
+
import datasets
|
51 |
+
from datasets import Version
|
52 |
+
|
53 |
+
from .bigbiohub import kb_features
|
54 |
+
from .bigbiohub import BigBioConfig
|
55 |
+
from .bigbiohub import Tasks
|
56 |
+
|
57 |
+
_LANGUAGES = ['English']
|
58 |
+
_PUBMED = False
|
59 |
+
_LOCAL = True
|
60 |
+
_CITATION = """\
|
61 |
+
@article{DBLP:journals/jamia/UzunerSSD11,
|
62 |
+
author = {
|
63 |
+
Ozlem Uzuner and
|
64 |
+
Brett R. South and
|
65 |
+
Shuying Shen and
|
66 |
+
Scott L. DuVall
|
67 |
+
},
|
68 |
+
title = {2010 i2b2/VA challenge on concepts, assertions, and relations in clinical
|
69 |
+
text},
|
70 |
+
journal = {J. Am. Medical Informatics Assoc.},
|
71 |
+
volume = {18},
|
72 |
+
number = {5},
|
73 |
+
pages = {552--556},
|
74 |
+
year = {2011},
|
75 |
+
url = {https://doi.org/10.1136/amiajnl-2011-000203},
|
76 |
+
doi = {10.1136/amiajnl-2011-000203},
|
77 |
+
timestamp = {Mon, 11 May 2020 23:00:20 +0200},
|
78 |
+
biburl = {https://dblp.org/rec/journals/jamia/UzunerSSD11.bib},
|
79 |
+
bibsource = {dblp computer science bibliography, https://dblp.org}
|
80 |
+
}
|
81 |
+
"""
|
82 |
+
|
83 |
+
_DATASETNAME = "n2c2_2010"
|
84 |
+
_DISPLAYNAME = "n2c2 2010 Concepts, Assertions, and Relations"
|
85 |
+
|
86 |
+
_DESCRIPTION = """\
|
87 |
+
The i2b2/VA corpus contained de-identified discharge summaries from Beth Israel
|
88 |
+
Deaconess Medical Center, Partners Healthcare, and University of Pittsburgh Medical
|
89 |
+
Center (UPMC). In addition, UPMC contributed de-identified progress notes to the
|
90 |
+
i2b2/VA corpus. This dataset contains the records from Beth Israel and Partners.
|
91 |
+
|
92 |
+
The 2010 i2b2/VA Workshop on Natural Language Processing Challenges for Clinical Records comprises three tasks:
|
93 |
+
1) a concept extraction task focused on the extraction of medical concepts from patient reports;
|
94 |
+
2) an assertion classification task focused on assigning assertion types for medical problem concepts;
|
95 |
+
3) a relation classification task focused on assigning relation types that hold between medical problems,
|
96 |
+
tests, and treatments.
|
97 |
+
|
98 |
+
i2b2 and the VA provided an annotated reference standard corpus for the three tasks.
|
99 |
+
Using this reference standard, 22 systems were developed for concept extraction,
|
100 |
+
21 for assertion classification, and 16 for relation classification.
|
101 |
+
"""
|
102 |
+
|
103 |
+
_HOMEPAGE = "https://portal.dbmi.hms.harvard.edu/projects/n2c2-nlp/"
|
104 |
+
|
105 |
+
_LICENSE = 'Data User Agreement'
|
106 |
+
|
107 |
+
_SUPPORTED_TASKS = [Tasks.NAMED_ENTITY_RECOGNITION, Tasks.RELATION_EXTRACTION]
|
108 |
+
|
109 |
+
_SOURCE_VERSION = "1.0.0"
|
110 |
+
|
111 |
+
_BIGBIO_VERSION = "1.0.0"
|
112 |
+
|
113 |
+
|
114 |
+
def _read_tar_gz(file_path: str, samples=None):
|
115 |
+
if samples is None:
|
116 |
+
samples = defaultdict(dict)
|
117 |
+
with tarfile.open(file_path, "r:gz") as tf:
|
118 |
+
|
119 |
+
for member in tf.getmembers():
|
120 |
+
base, filename = os.path.split(member.name)
|
121 |
+
_, ext = os.path.splitext(filename)
|
122 |
+
ext = ext[1:] # get rid of dot
|
123 |
+
sample_id = filename.split(".")[0]
|
124 |
+
|
125 |
+
if ext in ["txt", "ast", "con", "rel"]:
|
126 |
+
samples[sample_id][f"{ext}_source"] = (
|
127 |
+
os.path.basename(file_path) + "|" + member.name
|
128 |
+
)
|
129 |
+
|
130 |
+
with tf.extractfile(member) as fp:
|
131 |
+
content_bytes = fp.read()
|
132 |
+
|
133 |
+
content = content_bytes.decode("utf-8")
|
134 |
+
samples[sample_id][ext] = content
|
135 |
+
|
136 |
+
return samples
|
137 |
+
|
138 |
+
|
139 |
+
C_PATTERN = r"c=\"(.+?)\" (\d+):(\d+) (\d+):(\d+)"
|
140 |
+
T_PATTERN = r"t=\"(.+?)\""
|
141 |
+
A_PATTERN = r"a=\"(.+?)\""
|
142 |
+
R_PATTERN = r"r=\"(.+?)\""
|
143 |
+
|
144 |
+
# Constants
|
145 |
+
DELIMITER = "||"
|
146 |
+
SOURCE = "source"
|
147 |
+
BIGBIO_KB = "bigbio_kb"
|
148 |
+
|
149 |
+
|
150 |
+
def _parse_con_line(line: str) -> dict:
|
151 |
+
"""Parse one line from a *.con file.
|
152 |
+
|
153 |
+
A typical line has the form,
|
154 |
+
'c="angie cm johnson , m.d." 13:2 13:6||t="person"
|
155 |
+
|
156 |
+
This represents one concept to be placed into a coreference group.
|
157 |
+
It can be interpreted as follows,
|
158 |
+
'c="<string>" <start_line>:<start_token> <end_line>:<end_token>||t="<concept type>"'
|
159 |
+
|
160 |
+
"""
|
161 |
+
c_part, t_part = line.split(DELIMITER)
|
162 |
+
c_match, t_match = re.match(C_PATTERN, c_part), re.match(T_PATTERN, t_part)
|
163 |
+
return {
|
164 |
+
"text": c_match.group(1),
|
165 |
+
"start_line": int(c_match.group(2)),
|
166 |
+
"start_token": int(c_match.group(3)),
|
167 |
+
"end_line": int(c_match.group(4)),
|
168 |
+
"end_token": int(c_match.group(5)),
|
169 |
+
"concept": t_match.group(1),
|
170 |
+
}
|
171 |
+
|
172 |
+
|
173 |
+
def _parse_rel_line(line: str) -> dict:
|
174 |
+
"""Parse one line from a *.rel file.
|
175 |
+
|
176 |
+
A typical line has the form,
|
177 |
+
'c="coronary artery bypass graft" 115:4 115:7||r="TrAP"||c="coronary artery disease" 115:0 115:2'
|
178 |
+
|
179 |
+
This represents two concepts related to one another.
|
180 |
+
It can be interpreted as follows,
|
181 |
+
'c="<string>" <start_line>:<start_token> <end_line>:<end_token>||r="<type>"||c="<string>"
|
182 |
+
<start_line>:<start_token> <end_line>:<end_token>'
|
183 |
+
|
184 |
+
"""
|
185 |
+
c1_part, r_part, c2_part = line.split(DELIMITER)
|
186 |
+
c1_match, r_match, c2_match = (
|
187 |
+
re.match(C_PATTERN, c1_part),
|
188 |
+
re.match(R_PATTERN, r_part),
|
189 |
+
re.match(C_PATTERN, c2_part),
|
190 |
+
)
|
191 |
+
return {
|
192 |
+
"concept_1": {
|
193 |
+
"text": c1_match.group(1),
|
194 |
+
"start_line": int(c1_match.group(2)),
|
195 |
+
"start_token": int(c1_match.group(3)),
|
196 |
+
"end_line": int(c1_match.group(4)),
|
197 |
+
"end_token": int(c1_match.group(5)),
|
198 |
+
},
|
199 |
+
"concept_2": {
|
200 |
+
"text": c2_match.group(1),
|
201 |
+
"start_line": int(c2_match.group(2)),
|
202 |
+
"start_token": int(c2_match.group(3)),
|
203 |
+
"end_line": int(c2_match.group(4)),
|
204 |
+
"end_token": int(c2_match.group(5)),
|
205 |
+
},
|
206 |
+
"relation": r_match.group(1),
|
207 |
+
}
|
208 |
+
|
209 |
+
|
210 |
+
def _parse_ast_line(line: str) -> dict:
|
211 |
+
"""Parse one line from a *.ast file.
|
212 |
+
|
213 |
+
A typical line has the form,
|
214 |
+
'c="mild inferior wall hypokinesis" 42:2 42:5||t="problem"||a="present"'
|
215 |
+
|
216 |
+
This represents one concept along with it's assertion.
|
217 |
+
It can be interpreted as follows,
|
218 |
+
'c="<string>" <start_line>:<start_token> <end_line>:<end_token>||t="<concept type>"||a="<assertion type>"'
|
219 |
+
|
220 |
+
"""
|
221 |
+
c_part, t_part, a_part = line.split(DELIMITER)
|
222 |
+
c_match, t_match, a_match = (
|
223 |
+
re.match(C_PATTERN, c_part),
|
224 |
+
re.match(T_PATTERN, t_part),
|
225 |
+
re.match(A_PATTERN, a_part),
|
226 |
+
)
|
227 |
+
return {
|
228 |
+
"text": c_match.group(1),
|
229 |
+
"start_line": int(c_match.group(2)),
|
230 |
+
"start_token": int(c_match.group(3)),
|
231 |
+
"end_line": int(c_match.group(4)),
|
232 |
+
"end_token": int(c_match.group(5)),
|
233 |
+
"concept": t_match.group(1),
|
234 |
+
"assertion": a_match.group(1),
|
235 |
+
}
|
236 |
+
|
237 |
+
|
238 |
+
def _tokoff_from_line(text: str) -> List[Tuple[int, int]]:
|
239 |
+
"""Produce character offsets for each token (whitespace split)
|
240 |
+
|
241 |
+
For example,
|
242 |
+
text = " one two three ."
|
243 |
+
tokoff = [(1,4), (6,9), (10,15), (16,17)]
|
244 |
+
"""
|
245 |
+
tokoff = []
|
246 |
+
start = None
|
247 |
+
end = None
|
248 |
+
for ii, char in enumerate(text):
|
249 |
+
if char != " " and start is None:
|
250 |
+
start = ii
|
251 |
+
if char == " " and start is not None:
|
252 |
+
end = ii
|
253 |
+
tokoff.append((start, end))
|
254 |
+
start = None
|
255 |
+
if start is not None:
|
256 |
+
end = ii + 1
|
257 |
+
tokoff.append((start, end))
|
258 |
+
return tokoff
|
259 |
+
|
260 |
+
|
261 |
+
def _form_entity_id(sample_id, split, start_line, start_token, end_line, end_token):
|
262 |
+
return "{}-entity-{}-{}-{}-{}-{}".format(
|
263 |
+
sample_id,
|
264 |
+
split,
|
265 |
+
start_line,
|
266 |
+
start_token,
|
267 |
+
end_line,
|
268 |
+
end_token,
|
269 |
+
)
|
270 |
+
|
271 |
+
|
272 |
+
def _get_relations_from_sample(sample_id, sample, split):
|
273 |
+
rel_lines = sample["rel"].splitlines()
|
274 |
+
|
275 |
+
relations = []
|
276 |
+
for i, rel_line in enumerate(rel_lines):
|
277 |
+
a = {}
|
278 |
+
rel = _parse_rel_line(rel_line)
|
279 |
+
a["arg1_id"] = _form_entity_id(
|
280 |
+
sample_id,
|
281 |
+
split,
|
282 |
+
rel["concept_1"]["start_line"],
|
283 |
+
rel["concept_1"]["start_token"],
|
284 |
+
rel["concept_1"]["end_line"],
|
285 |
+
rel["concept_1"]["end_token"],
|
286 |
+
)
|
287 |
+
a["arg2_id"] = _form_entity_id(
|
288 |
+
sample_id,
|
289 |
+
split,
|
290 |
+
rel["concept_2"]["start_line"],
|
291 |
+
rel["concept_2"]["start_token"],
|
292 |
+
rel["concept_2"]["end_line"],
|
293 |
+
rel["concept_2"]["end_token"],
|
294 |
+
)
|
295 |
+
a["id"] = (
|
296 |
+
sample_id + "_" + a["arg1_id"] + "_" + rel["relation"] + "_" + a["arg2_id"]
|
297 |
+
)
|
298 |
+
a["normalized"] = []
|
299 |
+
a["type"] = rel["relation"]
|
300 |
+
relations.append(a)
|
301 |
+
|
302 |
+
return relations
|
303 |
+
|
304 |
+
|
305 |
+
def _get_entities_from_sample(sample_id, sample, split):
|
306 |
+
"""Parse the lines of a *.con concept file into entity objects"""
|
307 |
+
con_lines = sample["con"].splitlines()
|
308 |
+
|
309 |
+
text = sample["txt"]
|
310 |
+
text_lines = text.splitlines()
|
311 |
+
text_line_lengths = [len(el) for el in text_lines]
|
312 |
+
|
313 |
+
# parsed concepts (sort is just a convenience)
|
314 |
+
con_parsed = sorted(
|
315 |
+
[_parse_con_line(line) for line in con_lines],
|
316 |
+
key=lambda x: (x["start_line"], x["start_token"]),
|
317 |
+
)
|
318 |
+
|
319 |
+
entities = []
|
320 |
+
for ii_cp, cp in enumerate(con_parsed):
|
321 |
+
|
322 |
+
# annotations can span multiple lines
|
323 |
+
# we loop over all lines and build up the character offsets
|
324 |
+
for ii_line in range(cp["start_line"], cp["end_line"] + 1):
|
325 |
+
|
326 |
+
# character offset to the beginning of the line
|
327 |
+
# line length of each line + 1 new line character for each line
|
328 |
+
start_line_off = sum(text_line_lengths[: ii_line - 1]) + (ii_line - 1)
|
329 |
+
|
330 |
+
# offsets for each token relative to the beginning of the line
|
331 |
+
# "one two" -> [(0,3), (4,6)]
|
332 |
+
tokoff = _tokoff_from_line(text_lines[ii_line - 1])
|
333 |
+
|
334 |
+
# if this is a single line annotation
|
335 |
+
if ii_line == cp["start_line"] == cp["end_line"]:
|
336 |
+
start_off = start_line_off + tokoff[cp["start_token"]][0]
|
337 |
+
end_off = start_line_off + tokoff[cp["end_token"]][1]
|
338 |
+
|
339 |
+
# if multi-line and on first line
|
340 |
+
# end_off gets a +1 for new line character
|
341 |
+
elif (ii_line == cp["start_line"]) and (ii_line != cp["end_line"]):
|
342 |
+
start_off = start_line_off + tokoff[cp["start_token"]][0]
|
343 |
+
end_off = start_line_off + text_line_lengths[ii_line - 1] + 1
|
344 |
+
|
345 |
+
# if multi-line and on last line
|
346 |
+
elif (ii_line != cp["start_line"]) and (ii_line == cp["end_line"]):
|
347 |
+
end_off = end_off + tokoff[cp["end_token"]][1]
|
348 |
+
|
349 |
+
# if mult-line and not on first or last line
|
350 |
+
# (this does not seem to occur in this corpus)
|
351 |
+
else:
|
352 |
+
end_off += text_line_lengths[ii_line - 1] + 1
|
353 |
+
|
354 |
+
text_slice = text[start_off:end_off]
|
355 |
+
text_slice_norm_1 = text_slice.replace("\n", "").lower()
|
356 |
+
text_slice_norm_2 = text_slice.replace("\n", " ").lower()
|
357 |
+
match = text_slice_norm_1 == cp["text"] or text_slice_norm_2 == cp["text"]
|
358 |
+
if not match:
|
359 |
+
continue
|
360 |
+
|
361 |
+
entity_id = _form_entity_id(
|
362 |
+
sample_id,
|
363 |
+
split,
|
364 |
+
cp["start_line"],
|
365 |
+
cp["start_token"],
|
366 |
+
cp["end_line"],
|
367 |
+
cp["end_token"],
|
368 |
+
)
|
369 |
+
entity = {
|
370 |
+
"id": entity_id,
|
371 |
+
"offsets": [(start_off, end_off)],
|
372 |
+
# this is the difference between taking text from the entity
|
373 |
+
# or taking the text from the offsets. the differences are
|
374 |
+
# almost all casing with some small number of new line characters
|
375 |
+
# making up the rest
|
376 |
+
# "text": [cp["text"]],
|
377 |
+
"text": [text_slice],
|
378 |
+
"type": cp["concept"],
|
379 |
+
"normalized": [],
|
380 |
+
}
|
381 |
+
entities.append(entity)
|
382 |
+
|
383 |
+
# IDs are constructed such that duplicate IDs indicate duplicate (i.e. redundant) entities
|
384 |
+
# In practive this removes one duplicate sample from the test set
|
385 |
+
# {
|
386 |
+
# 'id': 'clinical-627-entity-test-122-9-122-9',
|
387 |
+
# 'offsets': [(5600, 5603)],
|
388 |
+
# 'text': ['her'],
|
389 |
+
# 'type': 'person'
|
390 |
+
# }
|
391 |
+
dedupe_entities = []
|
392 |
+
dedupe_entity_ids = set()
|
393 |
+
for entity in entities:
|
394 |
+
if entity["id"] in dedupe_entity_ids:
|
395 |
+
continue
|
396 |
+
else:
|
397 |
+
dedupe_entity_ids.add(entity["id"])
|
398 |
+
dedupe_entities.append(entity)
|
399 |
+
|
400 |
+
return dedupe_entities
|
401 |
+
|
402 |
+
|
403 |
+
class N2C22010RelationsDataset(datasets.GeneratorBasedBuilder):
|
404 |
+
"""i2b2 2010 task comprising concept, assertion and relation extraction"""
|
405 |
+
|
406 |
+
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION)
|
407 |
+
BIGBIO_VERSION = datasets.Version(_BIGBIO_VERSION)
|
408 |
+
|
409 |
+
# You will be able to load the "source" or "bigbio" configurations with
|
410 |
+
# ds_source = datasets.load_dataset('my_dataset', name='source')
|
411 |
+
# ds_bigbio = datasets.load_dataset('my_dataset', name='bigbio')
|
412 |
+
|
413 |
+
# For local datasets you can make use of the `data_dir` and `data_files` kwargs
|
414 |
+
# https://huggingface.co/docs/datasets/add_dataset.html#downloading-data-files-and-organizing-splits
|
415 |
+
# ds_source = datasets.load_dataset('my_dataset', name='source', data_dir="/path/to/data/files")
|
416 |
+
# ds_bigbio = datasets.load_dataset('my_dataset', name='bigbio', data_dir="/path/to/data/files")
|
417 |
+
|
418 |
+
_SOURCE_CONFIG_NAME = _DATASETNAME + "_" + SOURCE
|
419 |
+
_BIGBIO_CONFIG_NAME = _DATASETNAME + "_" + BIGBIO_KB
|
420 |
+
|
421 |
+
BUILDER_CONFIGS = [
|
422 |
+
BigBioConfig(
|
423 |
+
name=_SOURCE_CONFIG_NAME,
|
424 |
+
version=SOURCE_VERSION,
|
425 |
+
description=_DATASETNAME + " source schema",
|
426 |
+
schema=SOURCE,
|
427 |
+
subset_id=_DATASETNAME,
|
428 |
+
),
|
429 |
+
BigBioConfig(
|
430 |
+
name=_BIGBIO_CONFIG_NAME,
|
431 |
+
version=BIGBIO_VERSION,
|
432 |
+
description=_DATASETNAME + " BigBio schema",
|
433 |
+
schema=BIGBIO_KB,
|
434 |
+
subset_id=_DATASETNAME,
|
435 |
+
),
|
436 |
+
]
|
437 |
+
|
438 |
+
DEFAULT_CONFIG_NAME = _SOURCE_CONFIG_NAME
|
439 |
+
|
440 |
+
def _info(self) -> datasets.DatasetInfo:
|
441 |
+
|
442 |
+
if self.config.schema == SOURCE:
|
443 |
+
features = datasets.Features(
|
444 |
+
{
|
445 |
+
"doc_id": datasets.Value("string"),
|
446 |
+
"text": datasets.Value("string"),
|
447 |
+
"concepts": [
|
448 |
+
{
|
449 |
+
"start_line": datasets.Value("int64"),
|
450 |
+
"start_token": datasets.Value("int64"),
|
451 |
+
"end_line": datasets.Value("int64"),
|
452 |
+
"end_token": datasets.Value("int64"),
|
453 |
+
"text": datasets.Value("string"),
|
454 |
+
"concept": datasets.Value("string"),
|
455 |
+
}
|
456 |
+
],
|
457 |
+
"assertions": [
|
458 |
+
{
|
459 |
+
"start_line": datasets.Value("int64"),
|
460 |
+
"start_token": datasets.Value("int64"),
|
461 |
+
"end_line": datasets.Value("int64"),
|
462 |
+
"end_token": datasets.Value("int64"),
|
463 |
+
"text": datasets.Value("string"),
|
464 |
+
"concept": datasets.Value("string"),
|
465 |
+
"assertion": datasets.Value("string"),
|
466 |
+
}
|
467 |
+
],
|
468 |
+
"relations": [
|
469 |
+
{
|
470 |
+
"concept_1": {
|
471 |
+
"text": datasets.Value("string"),
|
472 |
+
"start_line": datasets.Value("int64"),
|
473 |
+
"start_token": datasets.Value("int64"),
|
474 |
+
"end_line": datasets.Value("int64"),
|
475 |
+
"end_token": datasets.Value("int64"),
|
476 |
+
},
|
477 |
+
"concept_2": {
|
478 |
+
"text": datasets.Value("string"),
|
479 |
+
"start_line": datasets.Value("int64"),
|
480 |
+
"start_token": datasets.Value("int64"),
|
481 |
+
"end_line": datasets.Value("int64"),
|
482 |
+
"end_token": datasets.Value("int64"),
|
483 |
+
},
|
484 |
+
"relation": datasets.Value("string"),
|
485 |
+
}
|
486 |
+
],
|
487 |
+
"unannotated": [
|
488 |
+
{
|
489 |
+
"text": datasets.Value("string"),
|
490 |
+
}
|
491 |
+
],
|
492 |
+
"metadata": {
|
493 |
+
"txt_source": datasets.Value("string"),
|
494 |
+
"con_source": datasets.Value("string"),
|
495 |
+
"ast_source": datasets.Value("string"),
|
496 |
+
"rel_source": datasets.Value("string"),
|
497 |
+
"unannotated_source": datasets.Value("string"),
|
498 |
+
},
|
499 |
+
}
|
500 |
+
)
|
501 |
+
|
502 |
+
elif self.config.schema == BIGBIO_KB:
|
503 |
+
features = kb_features
|
504 |
+
|
505 |
+
return datasets.DatasetInfo(
|
506 |
+
description=_DESCRIPTION,
|
507 |
+
features=features,
|
508 |
+
homepage=_HOMEPAGE,
|
509 |
+
license=str(_LICENSE),
|
510 |
+
citation=_CITATION,
|
511 |
+
)
|
512 |
+
|
513 |
+
def _split_generators(self, dl_manager) -> List[datasets.SplitGenerator]:
|
514 |
+
|
515 |
+
if self.config.data_dir is None or self.config.name is None:
|
516 |
+
raise ValueError(
|
517 |
+
"This is a local dataset. Please pass the data_dir and name kwarg to load_dataset."
|
518 |
+
)
|
519 |
+
else:
|
520 |
+
data_dir = self.config.data_dir
|
521 |
+
|
522 |
+
return [
|
523 |
+
datasets.SplitGenerator(
|
524 |
+
name=datasets.Split.TRAIN,
|
525 |
+
# Whatever you put in gen_kwargs will be passed to _generate_examples
|
526 |
+
gen_kwargs={
|
527 |
+
"data_dir": data_dir,
|
528 |
+
"split": str(datasets.Split.TRAIN),
|
529 |
+
},
|
530 |
+
),
|
531 |
+
datasets.SplitGenerator(
|
532 |
+
name=datasets.Split.TEST,
|
533 |
+
gen_kwargs={
|
534 |
+
"data_dir": data_dir,
|
535 |
+
"split": str(datasets.Split.TEST),
|
536 |
+
},
|
537 |
+
),
|
538 |
+
]
|
539 |
+
|
540 |
+
@staticmethod
|
541 |
+
def _get_source_sample(sample_id, sample):
|
542 |
+
return {
|
543 |
+
"doc_id": sample_id,
|
544 |
+
"text": sample.get("txt", ""),
|
545 |
+
"concepts": list(map(_parse_con_line, sample.get("con", "").splitlines())),
|
546 |
+
"assertions": list(
|
547 |
+
map(_parse_ast_line, sample.get("ast", "").splitlines())
|
548 |
+
),
|
549 |
+
"relations": list(map(_parse_rel_line, sample.get("rel", "").splitlines())),
|
550 |
+
"unannotated": sample.get("unannotated", ""),
|
551 |
+
"metadata": {
|
552 |
+
"txt_source": sample.get("txt_source", ""),
|
553 |
+
"con_source": sample.get("con_source", ""),
|
554 |
+
"ast_source": sample.get("ast_source", ""),
|
555 |
+
"rel_source": sample.get("rel_source", ""),
|
556 |
+
"unannotated_source": sample.get("unannotated_source", ""),
|
557 |
+
},
|
558 |
+
}
|
559 |
+
|
560 |
+
@staticmethod
|
561 |
+
def _get_bigbio_sample(sample_id, sample, split) -> dict:
|
562 |
+
|
563 |
+
passage_text = sample.get("txt", "")
|
564 |
+
entities = _get_entities_from_sample(sample_id, sample, split)
|
565 |
+
relations = _get_relations_from_sample(sample_id, sample, split)
|
566 |
+
return {
|
567 |
+
"id": sample_id,
|
568 |
+
"document_id": sample_id,
|
569 |
+
"passages": [
|
570 |
+
{
|
571 |
+
"id": f"{sample_id}-passage-0",
|
572 |
+
"type": "discharge summary",
|
573 |
+
"text": [passage_text],
|
574 |
+
"offsets": [(0, len(passage_text))],
|
575 |
+
}
|
576 |
+
],
|
577 |
+
"entities": entities,
|
578 |
+
"relations": relations,
|
579 |
+
"events": [],
|
580 |
+
"coreferences": [],
|
581 |
+
}
|
582 |
+
|
583 |
+
def _generate_examples(self, data_dir, split):
|
584 |
+
if split == "train":
|
585 |
+
samples = _read_tar_gz(
|
586 |
+
os.path.join(
|
587 |
+
data_dir, "concept_assertion_relation_training_data.tar.gz"
|
588 |
+
)
|
589 |
+
)
|
590 |
+
elif split == "test":
|
591 |
+
# This file adds con, ast and rel
|
592 |
+
samples = _read_tar_gz(
|
593 |
+
os.path.join(data_dir, "reference_standard_for_test_data.tar.gz")
|
594 |
+
)
|
595 |
+
# This file adds txt to already existing samples
|
596 |
+
samples = _read_tar_gz(os.path.join(data_dir, "test_data.tar.gz"), samples)
|
597 |
+
|
598 |
+
_id = 0
|
599 |
+
|
600 |
+
for sample_id, sample in samples.items():
|
601 |
+
|
602 |
+
if self.config.name == N2C22010RelationsDataset._SOURCE_CONFIG_NAME:
|
603 |
+
yield _id, self._get_source_sample(sample_id, sample)
|
604 |
+
elif self.config.name == N2C22010RelationsDataset._BIGBIO_CONFIG_NAME:
|
605 |
+
# This is to make sure unannotated data does not end up in big bio
|
606 |
+
if "unannotated" not in sample["txt_source"]:
|
607 |
+
yield _id, self._get_bigbio_sample(sample_id, sample, split)
|
608 |
+
|
609 |
+
_id += 1
|