gabrielaltay
commited on
Commit
•
e1512bf
1
Parent(s):
75e2e38
upload hubscripts/n2c2_2018_track1_hub.py to hub from bigbio repo
Browse files- n2c2_2018_track1.py +298 -0
n2c2_2018_track1.py
ADDED
@@ -0,0 +1,298 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2022 The HuggingFace Datasets Authors and the current dataset script contributor.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
|
16 |
+
"""
|
17 |
+
A dataset loader for the n2c2 2018 cohort selection dataset.
|
18 |
+
|
19 |
+
The dataset consists of three archive files,
|
20 |
+
├── train.zip - 202 records
|
21 |
+
└── n2c2-t1_gold_standard_test_data.zip - 86 records
|
22 |
+
|
23 |
+
The individual data files (inside the zip and tar archives) come in
|
24 |
+
xml files that contains text as well as labels.
|
25 |
+
|
26 |
+
|
27 |
+
The files comprising this dataset must be on the users local machine
|
28 |
+
in a single directory that is passed to `datasets.load_dataset` via
|
29 |
+
the `data_dir` kwarg. This loader script will read the archive files
|
30 |
+
directly (i.e. the user should not uncompress, untar or unzip any of
|
31 |
+
the files).
|
32 |
+
|
33 |
+
Data Access from https://portal.dbmi.hms.harvard.edu/projects/n2c2-nlp/
|
34 |
+
"""
|
35 |
+
|
36 |
+
import os
|
37 |
+
import zipfile
|
38 |
+
from collections import defaultdict
|
39 |
+
from typing import List
|
40 |
+
|
41 |
+
import datasets
|
42 |
+
from lxml import etree
|
43 |
+
|
44 |
+
from .bigbiohub import text.features
|
45 |
+
from .bigbiohub import BigBioConfig
|
46 |
+
from .bigbiohub import Tasks
|
47 |
+
|
48 |
+
_LANGUAGES = ['English']
|
49 |
+
_PUBMED = False
|
50 |
+
_LOCAL = True
|
51 |
+
_CITATION = """\
|
52 |
+
@article{DBLP:journals/jamia/StubbsFSHU19,
|
53 |
+
author = {
|
54 |
+
Amber Stubbs and
|
55 |
+
Michele Filannino and
|
56 |
+
Ergin Soysal and
|
57 |
+
Samuel Henry and
|
58 |
+
Ozlem Uzuner
|
59 |
+
},
|
60 |
+
title = {Cohort selection for clinical trials: n2c2 2018 shared task track 1},
|
61 |
+
journal = {J. Am. Medical Informatics Assoc.},
|
62 |
+
volume = {26},
|
63 |
+
number = {11},
|
64 |
+
pages = {1163--1171},
|
65 |
+
year = {2019},
|
66 |
+
url = {https://doi.org/10.1093/jamia/ocz163},
|
67 |
+
doi = {10.1093/jamia/ocz163},
|
68 |
+
timestamp = {Mon, 15 Jun 2020 16:56:11 +0200},
|
69 |
+
biburl = {https://dblp.org/rec/journals/jamia/StubbsFSHU19.bib},
|
70 |
+
bibsource = {dblp computer science bibliography, https://dblp.org}
|
71 |
+
}
|
72 |
+
"""
|
73 |
+
|
74 |
+
_DATASETNAME = "n2c2_2018_track1"
|
75 |
+
_DISPLAYNAME = "n2c2 2018 Selection Criteria"
|
76 |
+
|
77 |
+
_DESCRIPTION = """\
|
78 |
+
Track 1 of the 2018 National NLP Clinical Challenges shared tasks focused
|
79 |
+
on identifying which patients in a corpus of longitudinal medical records
|
80 |
+
meet and do not meet identified selection criteria.
|
81 |
+
|
82 |
+
This shared task aimed to determine whether NLP systems could be trained to identify if patients met or did not meet
|
83 |
+
a set of selection criteria taken from real clinical trials. The selected criteria required measurement detection (
|
84 |
+
“Any HbA1c value between 6.5 and 9.5%”), inference (“Use of aspirin to prevent myocardial infarction”),
|
85 |
+
temporal reasoning (“Diagnosis of ketoacidosis in the past year”), and expert judgment to assess (“Major
|
86 |
+
diabetes-related complication”). For the corpus, we used the dataset of American English, longitudinal clinical
|
87 |
+
narratives from the 2014 i2b2/UTHealth shared task 4.
|
88 |
+
|
89 |
+
The final selected 13 selection criteria are as follows:
|
90 |
+
1. DRUG-ABUSE: Drug abuse, current or past
|
91 |
+
2. ALCOHOL-ABUSE: Current alcohol use over weekly recommended limits
|
92 |
+
3. ENGLISH: Patient must speak English
|
93 |
+
4. MAKES-DECISIONS: Patient must make their own medical decisions
|
94 |
+
5. ABDOMINAL: History of intra-abdominal surgery, small or large intestine
|
95 |
+
resection, or small bowel obstruction.
|
96 |
+
6. MAJOR-DIABETES: Major diabetes-related complication. For the purposes of
|
97 |
+
this annotation, we define “major complication” (as opposed to “minor complication”)
|
98 |
+
as any of the following that are a result of (or strongly correlated with) uncontrolled diabetes:
|
99 |
+
a. Amputation
|
100 |
+
b. Kidney damage
|
101 |
+
c. Skin conditions
|
102 |
+
d. Retinopathy
|
103 |
+
e. nephropathy
|
104 |
+
f. neuropathy
|
105 |
+
7. ADVANCED-CAD: Advanced cardiovascular disease (CAD).
|
106 |
+
For the purposes of this annotation, we define “advanced” as having 2 or more of the following:
|
107 |
+
a. Taking 2 or more medications to treat CAD
|
108 |
+
b. History of myocardial infarction (MI)
|
109 |
+
c. Currently experiencing angina
|
110 |
+
d. Ischemia, past or present
|
111 |
+
8. MI-6MOS: MI in the past 6 months
|
112 |
+
9. KETO-1YR: Diagnosis of ketoacidosis in the past year
|
113 |
+
10. DIETSUPP-2MOS: Taken a dietary supplement (excluding vitamin D) in the past 2 months
|
114 |
+
11. ASP-FOR-MI: Use of aspirin to prevent MI
|
115 |
+
12. HBA1C: Any hemoglobin A1c (HbA1c) value between 6.5% and 9.5%
|
116 |
+
13. CREATININE: Serum creatinine > upper limit of normal
|
117 |
+
|
118 |
+
The training consists of 202 patient records with document-level annotations, 10 records
|
119 |
+
with textual spans indicating annotator’s evidence for their annotations while test set contains 86.
|
120 |
+
|
121 |
+
Note:
|
122 |
+
* The inter-annotator average agreement is 84.9%
|
123 |
+
* Whereabouts of 10 records with textual spans indicating annotator’s evidence are unknown.
|
124 |
+
However, author did a simple script based validation to check if any of the tags contained any text
|
125 |
+
in any of the training set and they do not, which confirms that atleast train and test do not
|
126 |
+
have any evidence tagged alongside corresponding tags.
|
127 |
+
"""
|
128 |
+
|
129 |
+
_HOMEPAGE = "https://portal.dbmi.hms.harvard.edu/projects/n2c2-nlp/"
|
130 |
+
|
131 |
+
_LICENSE = 'Data User Agreement'
|
132 |
+
|
133 |
+
_SUPPORTED_TASKS = [Tasks.TEXT_CLASSIFICATION]
|
134 |
+
|
135 |
+
_SOURCE_VERSION = "1.0.0"
|
136 |
+
|
137 |
+
_BIGBIO_VERSION = "1.0.0"
|
138 |
+
|
139 |
+
# Constants
|
140 |
+
SOURCE = "source"
|
141 |
+
BIGBIO_TEXT = "bigbio_text"
|
142 |
+
|
143 |
+
|
144 |
+
def _read_zip(file_path):
|
145 |
+
samples = defaultdict(dict)
|
146 |
+
with zipfile.ZipFile(file_path) as zf:
|
147 |
+
for info in zf.infolist():
|
148 |
+
|
149 |
+
base, filename = os.path.split(info.filename)
|
150 |
+
_, ext = os.path.splitext(filename)
|
151 |
+
ext = ext[1:] # get rid of dot
|
152 |
+
sample_id = filename.split(".")[0]
|
153 |
+
|
154 |
+
if ext == "xml" and not filename.startswith("."):
|
155 |
+
content = zf.read(info).decode("utf-8").encode()
|
156 |
+
root = etree.XML(content)
|
157 |
+
text, tags = root.getchildren()
|
158 |
+
samples[sample_id]["txt"] = text.text
|
159 |
+
samples[sample_id]["tags"] = {}
|
160 |
+
for child in tags:
|
161 |
+
samples[sample_id]["tags"][child.tag] = child.get("met")
|
162 |
+
|
163 |
+
return samples
|
164 |
+
|
165 |
+
|
166 |
+
class N2C22018CohortSelectionDataset(datasets.GeneratorBasedBuilder):
|
167 |
+
"""i2b2 2018 track 1 cohort selection task"""
|
168 |
+
|
169 |
+
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION)
|
170 |
+
BIGBIO_VERSION = datasets.Version(_BIGBIO_VERSION)
|
171 |
+
|
172 |
+
_SOURCE_CONFIG_NAME = _DATASETNAME + "_" + SOURCE
|
173 |
+
_BIGBIO_CONFIG_NAME = _DATASETNAME + "_" + BIGBIO_TEXT
|
174 |
+
|
175 |
+
BUILDER_CONFIGS = [
|
176 |
+
BigBioConfig(
|
177 |
+
name=_SOURCE_CONFIG_NAME,
|
178 |
+
version=SOURCE_VERSION,
|
179 |
+
description=_DATASETNAME + " source schema",
|
180 |
+
schema=SOURCE,
|
181 |
+
subset_id=_DATASETNAME,
|
182 |
+
),
|
183 |
+
BigBioConfig(
|
184 |
+
name=_BIGBIO_CONFIG_NAME,
|
185 |
+
version=BIGBIO_VERSION,
|
186 |
+
description=_DATASETNAME + " BigBio schema",
|
187 |
+
schema=BIGBIO_TEXT,
|
188 |
+
subset_id=_DATASETNAME,
|
189 |
+
),
|
190 |
+
]
|
191 |
+
|
192 |
+
DEFAULT_CONFIG_NAME = _SOURCE_CONFIG_NAME
|
193 |
+
LABEL_CLASS_NAMES = [
|
194 |
+
"ABDOMINAL",
|
195 |
+
"ADVANCED-CAD",
|
196 |
+
"ALCOHOL-ABUSE",
|
197 |
+
"ASP-FOR-MI",
|
198 |
+
"CREATININE",
|
199 |
+
"DIETSUPP-2MOS",
|
200 |
+
"DRUG-ABUSE",
|
201 |
+
"ENGLISH",
|
202 |
+
"HBA1C",
|
203 |
+
"KETO-1YR",
|
204 |
+
"MAJOR-DIABETES",
|
205 |
+
"MAKES-DECISIONS",
|
206 |
+
"MI-6MOS",
|
207 |
+
]
|
208 |
+
|
209 |
+
def _info(self) -> datasets.DatasetInfo:
|
210 |
+
|
211 |
+
if self.config.schema == SOURCE:
|
212 |
+
labels = {
|
213 |
+
key: datasets.ClassLabel(names=["met", "not met"])
|
214 |
+
for key in self.LABEL_CLASS_NAMES
|
215 |
+
}
|
216 |
+
features = datasets.Features(
|
217 |
+
{
|
218 |
+
"id": datasets.Value("string"),
|
219 |
+
"document_id": datasets.Value("string"),
|
220 |
+
"text": datasets.Value("string"),
|
221 |
+
"tags": labels,
|
222 |
+
}
|
223 |
+
)
|
224 |
+
|
225 |
+
elif self.config.schema == BIGBIO_TEXT:
|
226 |
+
features = text.features
|
227 |
+
|
228 |
+
return datasets.DatasetInfo(
|
229 |
+
description=_DESCRIPTION,
|
230 |
+
features=features,
|
231 |
+
homepage=_HOMEPAGE,
|
232 |
+
license=str(_LICENSE),
|
233 |
+
citation=_CITATION,
|
234 |
+
)
|
235 |
+
|
236 |
+
def _split_generators(self, dl_manager) -> List[datasets.SplitGenerator]:
|
237 |
+
|
238 |
+
if self.config.data_dir is None or self.config.name is None:
|
239 |
+
raise ValueError(
|
240 |
+
"This is a local dataset. Please pass the data_dir and name kwarg to load_dataset."
|
241 |
+
)
|
242 |
+
else:
|
243 |
+
data_dir = self.config.data_dir
|
244 |
+
|
245 |
+
return [
|
246 |
+
datasets.SplitGenerator(
|
247 |
+
name=datasets.Split.TRAIN,
|
248 |
+
gen_kwargs={
|
249 |
+
"file_path": os.path.join(data_dir, "train.zip"),
|
250 |
+
},
|
251 |
+
),
|
252 |
+
datasets.SplitGenerator(
|
253 |
+
name=datasets.Split.TEST,
|
254 |
+
gen_kwargs={
|
255 |
+
"file_path": os.path.join(
|
256 |
+
data_dir, "n2c2-t1_gold_standard_test_data.zip"
|
257 |
+
),
|
258 |
+
},
|
259 |
+
),
|
260 |
+
]
|
261 |
+
|
262 |
+
@staticmethod
|
263 |
+
def _get_source_sample(sample_id, sample):
|
264 |
+
return {
|
265 |
+
"id": sample_id,
|
266 |
+
"document_id": sample_id,
|
267 |
+
"text": sample.get("txt", ""),
|
268 |
+
"tags": sample.get("tags", {}),
|
269 |
+
}
|
270 |
+
|
271 |
+
@staticmethod
|
272 |
+
def _get_bigbio_sample(sample_id, sample) -> dict:
|
273 |
+
|
274 |
+
tags = sample.get("tags", None)
|
275 |
+
if tags:
|
276 |
+
labels = [name for name, met_status in tags.items() if met_status == "met"]
|
277 |
+
else:
|
278 |
+
labels = []
|
279 |
+
|
280 |
+
return {
|
281 |
+
"id": sample_id,
|
282 |
+
"document_id": sample_id,
|
283 |
+
"text": sample.get("txt", ""),
|
284 |
+
"labels": labels,
|
285 |
+
}
|
286 |
+
|
287 |
+
def _generate_examples(self, file_path):
|
288 |
+
samples = _read_zip(file_path)
|
289 |
+
|
290 |
+
_id = 0
|
291 |
+
for sample_id, sample in samples.items():
|
292 |
+
|
293 |
+
if self.config.name == self._SOURCE_CONFIG_NAME:
|
294 |
+
yield _id, self._get_source_sample(sample_id, sample)
|
295 |
+
elif self.config.name == self._BIGBIO_CONFIG_NAME:
|
296 |
+
yield _id, self._get_bigbio_sample(sample_id, sample)
|
297 |
+
|
298 |
+
_id += 1
|