File size: 10,104 Bytes
333b52e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 |
# coding=utf-8
# Copyright 2022 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import collections
import itertools
from pathlib import Path
from typing import Dict, List, Tuple
import datasets
from bioc import biocxml
from .bigbiohub import kb_features
from .bigbiohub import BigBioConfig
from .bigbiohub import Tasks
_LANGUAGES = ['English']
_PUBMED = True
_LOCAL = False
_CITATION = """\
@article{islamaj2021nlm,
title = {
NLM-Gene, a richly annotated gold standard dataset for gene entities that
addresses ambiguity and multi-species gene recognition
},
author = {
Islamaj, Rezarta and Wei, Chih-Hsuan and Cissel, David and Miliaras,
Nicholas and Printseva, Olga and Rodionov, Oleg and Sekiya, Keiko and Ward,
Janice and Lu, Zhiyong
},
year = 2021,
journal = {Journal of Biomedical Informatics},
publisher = {Elsevier},
volume = 118,
pages = 103779
}
"""
_DATASETNAME = "nlm_gene"
_DISPLAYNAME = "NLM-Gene"
_DESCRIPTION = """\
NLM-Gene consists of 550 PubMed articles, from 156 journals, and contains more \
than 15 thousand unique gene names, corresponding to more than five thousand \
gene identifiers (NCBI Gene taxonomy). This corpus contains gene annotation data \
from 28 organisms. The annotated articles contain on average 29 gene names, and \
10 gene identifiers per article. These characteristics demonstrate that this \
article set is an important benchmark dataset to test the accuracy of gene \
recognition algorithms both on multi-species and ambiguous data. The NLM-Gene \
corpus will be invaluable for advancing text-mining techniques for gene \
identification tasks in biomedical text.
"""
_HOMEPAGE = "https://zenodo.org/record/5089049"
_LICENSE = 'Creative Commons Zero v1.0 Universal'
_URLS = {
"source": "https://zenodo.org/record/5089049/files/NLM-Gene-Corpus.zip",
"bigbio_kb": "https://zenodo.org/record/5089049/files/NLM-Gene-Corpus.zip",
}
_SUPPORTED_TASKS = [Tasks.NAMED_ENTITY_RECOGNITION, Tasks.NAMED_ENTITY_DISAMBIGUATION]
_SOURCE_VERSION = "1.0.0"
_BIGBIO_VERSION = "1.0.0"
class NLMGeneDataset(datasets.GeneratorBasedBuilder):
"""NLM-Gene Dataset for gene entities"""
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION)
BIGBIO_VERSION = datasets.Version(_BIGBIO_VERSION)
BUILDER_CONFIGS = [
BigBioConfig(
name="nlm_gene_source",
version=SOURCE_VERSION,
description="NlM Gene source schema",
schema="source",
subset_id="nlm_gene",
),
BigBioConfig(
name="nlm_gene_bigbio_kb",
version=BIGBIO_VERSION,
description="NlM Gene BigBio schema",
schema="bigbio_kb",
subset_id="nlm_gene",
),
]
DEFAULT_CONFIG_NAME = "nlm_gene_source"
def _info(self) -> datasets.DatasetInfo:
if self.config.schema == "source":
if self.config.schema == "source":
# this is a variation on the BioC format
features = datasets.Features(
{
"passages": [
{
"document_id": datasets.Value("string"),
"type": datasets.Value("string"),
"text": datasets.Value("string"),
"entities": [
{
"id": datasets.Value("string"),
"offsets": [[datasets.Value("int32")]],
"text": [datasets.Value("string")],
"type": datasets.Value("string"),
"normalized": [
{
"db_name": datasets.Value("string"),
"db_id": datasets.Value("string"),
}
],
}
],
}
]
}
)
elif self.config.schema == "bigbio_kb":
features = kb_features
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=features,
homepage=_HOMEPAGE,
license=str(_LICENSE),
citation=_CITATION,
)
def _split_generators(self, dl_manager) -> List[datasets.SplitGenerator]:
"""Returns SplitGenerators."""
urls = _URLS[self.config.schema]
data_dir = Path(dl_manager.download_and_extract(urls))
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={
"filepath": data_dir / "Corpus",
"file_name": "Pmidlist.Train.txt",
"split": "train",
},
),
datasets.SplitGenerator(
name=datasets.Split.TEST,
gen_kwargs={
"filepath": data_dir / "Corpus",
"file_name": "Pmidlist.Test.txt",
"split": "test",
},
),
]
@staticmethod
def _get_bioc_entity(
span, db_id_key="NCBI Gene identifier", splitters=",;|-"
) -> dict:
"""Parse BioC entity annotation."""
offsets, texts = get_texts_and_offsets_from_bioc_ann(span)
db_ids = span.infons.get(db_id_key, "-1")
# Find connector between db_ids for the normalization, if not found, use default
connector = "|"
for splitter in list(splitters):
if splitter in db_ids:
connector = splitter
normalized = [
{"db_name": db_id_key, "db_id": db_id} for db_id in db_ids.split(connector)
]
return {
"id": span.id,
"offsets": offsets,
"text": texts,
"type": span.infons["type"],
"normalized": normalized,
}
def _generate_examples(
self, filepath: Path, file_name: str, split: str
) -> Tuple[int, Dict]:
"""Yields examples as (key, example) tuples."""
if self.config.schema == "source":
with open(filepath / file_name, encoding="utf-8") as f:
contents = f.readlines()
for uid, content in enumerate(contents):
file_id = content.replace("\n", "")
file_path = filepath / "FINAL" / f"{file_id}.BioC.XML"
reader = biocxml.BioCXMLDocumentReader(file_path.as_posix())
for xdoc in reader:
yield uid, {
"passages": [
{
"document_id": xdoc.id,
"type": passage.infons["type"],
"text": passage.text,
"entities": [
self._get_bioc_entity(span)
for span in passage.annotations
],
}
for passage in xdoc.passages
]
}
elif self.config.schema == "bigbio_kb":
with open(filepath / file_name, encoding="utf-8") as f:
contents = f.readlines()
uid = 0 # global unique id
for i, content in enumerate(contents):
file_id = content.replace("\n", "")
file_path = filepath / "FINAL" / f"{file_id}.BioC.XML"
reader = biocxml.BioCXMLDocumentReader(file_path.as_posix())
for xdoc in reader:
data = {
"id": uid,
"document_id": xdoc.id,
"passages": [],
"entities": [],
"relations": [],
"events": [],
"coreferences": [],
}
uid += 1
char_start = 0
# passages must not overlap and spans must cover the entire document
for passage in xdoc.passages:
offsets = [[char_start, char_start + len(passage.text)]]
char_start = char_start + len(passage.text) + 1
data["passages"].append(
{
"id": uid,
"type": passage.infons["type"],
"text": [passage.text],
"offsets": offsets,
}
)
uid += 1
# entities
for passage in xdoc.passages:
for span in passage.annotations:
ent = self._get_bioc_entity(
span, db_id_key="NCBI Gene identifier"
)
ent["id"] = uid # override BioC default id
data["entities"].append(ent)
uid += 1
yield i, data
|