|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import collections |
|
import itertools |
|
from pathlib import Path |
|
from typing import Dict, List, Tuple |
|
|
|
import datasets |
|
from bioc import biocxml |
|
|
|
from .bigbiohub import kb_features |
|
from .bigbiohub import BigBioConfig |
|
from .bigbiohub import Tasks |
|
from .bigbiohub import get_texts_and_offsets_from_bioc_ann |
|
|
|
|
|
_LANGUAGES = ['English'] |
|
_PUBMED = True |
|
_LOCAL = False |
|
_CITATION = """\ |
|
@article{islamaj2021nlm, |
|
title = { |
|
NLM-Gene, a richly annotated gold standard dataset for gene entities that |
|
addresses ambiguity and multi-species gene recognition |
|
}, |
|
author = { |
|
Islamaj, Rezarta and Wei, Chih-Hsuan and Cissel, David and Miliaras, |
|
Nicholas and Printseva, Olga and Rodionov, Oleg and Sekiya, Keiko and Ward, |
|
Janice and Lu, Zhiyong |
|
}, |
|
year = 2021, |
|
journal = {Journal of Biomedical Informatics}, |
|
publisher = {Elsevier}, |
|
volume = 118, |
|
pages = 103779 |
|
} |
|
""" |
|
|
|
_DATASETNAME = "nlm_gene" |
|
_DISPLAYNAME = "NLM-Gene" |
|
|
|
_DESCRIPTION = """\ |
|
NLM-Gene consists of 550 PubMed articles, from 156 journals, and contains more \ |
|
than 15 thousand unique gene names, corresponding to more than five thousand \ |
|
gene identifiers (NCBI Gene taxonomy). This corpus contains gene annotation data \ |
|
from 28 organisms. The annotated articles contain on average 29 gene names, and \ |
|
10 gene identifiers per article. These characteristics demonstrate that this \ |
|
article set is an important benchmark dataset to test the accuracy of gene \ |
|
recognition algorithms both on multi-species and ambiguous data. The NLM-Gene \ |
|
corpus will be invaluable for advancing text-mining techniques for gene \ |
|
identification tasks in biomedical text. |
|
""" |
|
|
|
_HOMEPAGE = "https://zenodo.org/record/5089049" |
|
|
|
_LICENSE = 'Creative Commons Zero v1.0 Universal' |
|
|
|
_URLS = { |
|
"source": "https://zenodo.org/record/5089049/files/NLM-Gene-Corpus.zip", |
|
"bigbio_kb": "https://zenodo.org/record/5089049/files/NLM-Gene-Corpus.zip", |
|
} |
|
|
|
_SUPPORTED_TASKS = [Tasks.NAMED_ENTITY_RECOGNITION, Tasks.NAMED_ENTITY_DISAMBIGUATION] |
|
|
|
_SOURCE_VERSION = "1.0.0" |
|
_BIGBIO_VERSION = "1.0.0" |
|
|
|
|
|
class NLMGeneDataset(datasets.GeneratorBasedBuilder): |
|
"""NLM-Gene Dataset for gene entities""" |
|
|
|
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION) |
|
BIGBIO_VERSION = datasets.Version(_BIGBIO_VERSION) |
|
|
|
BUILDER_CONFIGS = [ |
|
BigBioConfig( |
|
name="nlm_gene_source", |
|
version=SOURCE_VERSION, |
|
description="NlM Gene source schema", |
|
schema="source", |
|
subset_id="nlm_gene", |
|
), |
|
BigBioConfig( |
|
name="nlm_gene_bigbio_kb", |
|
version=BIGBIO_VERSION, |
|
description="NlM Gene BigBio schema", |
|
schema="bigbio_kb", |
|
subset_id="nlm_gene", |
|
), |
|
] |
|
|
|
DEFAULT_CONFIG_NAME = "nlm_gene_source" |
|
|
|
def _info(self) -> datasets.DatasetInfo: |
|
|
|
if self.config.schema == "source": |
|
if self.config.schema == "source": |
|
|
|
features = datasets.Features( |
|
{ |
|
"passages": [ |
|
{ |
|
"document_id": datasets.Value("string"), |
|
"type": datasets.Value("string"), |
|
"text": datasets.Value("string"), |
|
"entities": [ |
|
{ |
|
"id": datasets.Value("string"), |
|
"offsets": [[datasets.Value("int32")]], |
|
"text": [datasets.Value("string")], |
|
"type": datasets.Value("string"), |
|
"normalized": [ |
|
{ |
|
"db_name": datasets.Value("string"), |
|
"db_id": datasets.Value("string"), |
|
} |
|
], |
|
} |
|
], |
|
} |
|
] |
|
} |
|
) |
|
|
|
elif self.config.schema == "bigbio_kb": |
|
features = kb_features |
|
|
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=features, |
|
homepage=_HOMEPAGE, |
|
license=str(_LICENSE), |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager) -> List[datasets.SplitGenerator]: |
|
"""Returns SplitGenerators.""" |
|
urls = _URLS[self.config.schema] |
|
data_dir = Path(dl_manager.download_and_extract(urls)) |
|
|
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={ |
|
"filepath": data_dir / "Corpus", |
|
"file_name": "Pmidlist.Train.txt", |
|
"split": "train", |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TEST, |
|
gen_kwargs={ |
|
"filepath": data_dir / "Corpus", |
|
"file_name": "Pmidlist.Test.txt", |
|
"split": "test", |
|
}, |
|
), |
|
] |
|
|
|
@staticmethod |
|
def _get_bioc_entity( |
|
span, db_id_key="NCBI Gene identifier", splitters=",;|-" |
|
) -> dict: |
|
"""Parse BioC entity annotation.""" |
|
offsets, texts = get_texts_and_offsets_from_bioc_ann(span) |
|
db_ids = span.infons.get(db_id_key, "-1") |
|
|
|
connector = "|" |
|
for splitter in list(splitters): |
|
if splitter in db_ids: |
|
connector = splitter |
|
normalized = [ |
|
{"db_name": "NCBIGene", "db_id": db_id} for db_id in db_ids.split(connector) |
|
] |
|
|
|
return { |
|
"id": span.id, |
|
"offsets": offsets, |
|
"text": texts, |
|
"type": span.infons["type"], |
|
"normalized": normalized, |
|
} |
|
|
|
def _generate_examples( |
|
self, filepath: Path, file_name: str, split: str |
|
) -> Tuple[int, Dict]: |
|
"""Yields examples as (key, example) tuples.""" |
|
|
|
if self.config.schema == "source": |
|
with open(filepath / file_name, encoding="utf-8") as f: |
|
contents = f.readlines() |
|
for uid, content in enumerate(contents): |
|
file_id = content.replace("\n", "") |
|
file_path = filepath / "FINAL" / f"{file_id}.BioC.XML" |
|
reader = biocxml.BioCXMLDocumentReader(file_path.as_posix()) |
|
for xdoc in reader: |
|
yield uid, { |
|
"passages": [ |
|
{ |
|
"document_id": xdoc.id, |
|
"type": passage.infons["type"], |
|
"text": passage.text, |
|
"entities": [ |
|
self._get_bioc_entity(span) |
|
for span in passage.annotations |
|
], |
|
} |
|
for passage in xdoc.passages |
|
] |
|
} |
|
elif self.config.schema == "bigbio_kb": |
|
with open(filepath / file_name, encoding="utf-8") as f: |
|
contents = f.readlines() |
|
uid = 0 |
|
for i, content in enumerate(contents): |
|
file_id = content.replace("\n", "") |
|
file_path = filepath / "FINAL" / f"{file_id}.BioC.XML" |
|
reader = biocxml.BioCXMLDocumentReader(file_path.as_posix()) |
|
for xdoc in reader: |
|
data = { |
|
"id": uid, |
|
"document_id": xdoc.id, |
|
"passages": [], |
|
"entities": [], |
|
"relations": [], |
|
"events": [], |
|
"coreferences": [], |
|
} |
|
uid += 1 |
|
|
|
char_start = 0 |
|
|
|
for passage in xdoc.passages: |
|
offsets = [[char_start, char_start + len(passage.text)]] |
|
char_start = char_start + len(passage.text) + 1 |
|
data["passages"].append( |
|
{ |
|
"id": uid, |
|
"type": passage.infons["type"], |
|
"text": [passage.text], |
|
"offsets": offsets, |
|
} |
|
) |
|
uid += 1 |
|
|
|
for passage in xdoc.passages: |
|
for span in passage.annotations: |
|
ent = self._get_bioc_entity( |
|
span, db_id_key="NCBI Gene identifier" |
|
) |
|
ent["id"] = uid |
|
data["entities"].append(ent) |
|
uid += 1 |
|
|
|
yield i, data |
|
|