|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
""" |
|
PPS dataset is a list of triplets. Each entry is in format (patient_uid_1, patient_uid_2, similarity) |
|
where similarity has three values:0, 1, 2, indicating corresponding similarity. |
|
""" |
|
|
|
import json |
|
import os |
|
from typing import Dict, List, Tuple |
|
|
|
import datasets |
|
import pandas as pd |
|
|
|
from .bigbiohub import pairs_features |
|
from .bigbiohub import BigBioConfig |
|
from .bigbiohub import Tasks |
|
|
|
_LANGUAGES = ['English'] |
|
_PUBMED = True |
|
_LOCAL = False |
|
_CITATION = """\ |
|
@misc{zhao2022pmcpatients, |
|
title={PMC-Patients: A Large-scale Dataset of Patient Notes and Relations Extracted from Case |
|
Reports in PubMed Central}, |
|
author={Zhengyun Zhao and Qiao Jin and Sheng Yu}, |
|
year={2022}, |
|
eprint={2202.13876}, |
|
archivePrefix={arXiv}, |
|
primaryClass={cs.CL} |
|
}""" |
|
|
|
_DATASETNAME = "pmc_patients" |
|
_DISPLAYNAME = "PMC-Patients" |
|
|
|
_DESCRIPTION = """\ |
|
This dataset is used for calculating the similarity between two patient descriptions. |
|
""" |
|
|
|
_HOMEPAGE = "https://github.com/zhao-zy15/PMC-Patients" |
|
|
|
_LICENSE = 'Creative Commons Attribution Non Commercial Share Alike 4.0 International' |
|
|
|
_URLS = { |
|
_DATASETNAME: "https://drive.google.com/u/0/uc?id=1vFCLy_CF8fxPDZvDtHPR6Dl6x9l0TyvW&export=download", |
|
} |
|
|
|
_SUPPORTED_TASKS = [Tasks.SEMANTIC_SIMILARITY] |
|
|
|
_SOURCE_VERSION = "1.2.0" |
|
|
|
_BIGBIO_VERSION = "1.0.0" |
|
|
|
|
|
class PMCPatientsDataset(datasets.GeneratorBasedBuilder): |
|
"""PPS dataset is a list of triplets. |
|
Each entry is in format (patient_uid_1, patient_uid_2, similarity) and their |
|
respective texts. |
|
where similarity has three values:0, 1, 2, indicating corresponding similarity. |
|
""" |
|
|
|
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION) |
|
BIGBIO_VERSION = datasets.Version(_BIGBIO_VERSION) |
|
|
|
BUILDER_CONFIGS = [ |
|
BigBioConfig( |
|
name="pmc_patients_source", |
|
version=SOURCE_VERSION, |
|
description="pmc_patients source schema", |
|
schema="source", |
|
subset_id="pmc_patients", |
|
), |
|
BigBioConfig( |
|
name="pmc_patients_bigbio_pairs", |
|
version=BIGBIO_VERSION, |
|
description="pmc_patients BigBio schema", |
|
schema="bigbio_pairs", |
|
subset_id="pmc_patients", |
|
), |
|
] |
|
|
|
DEFAULT_CONFIG_NAME = "pmc_patients_source" |
|
|
|
def _info(self) -> datasets.DatasetInfo: |
|
if self.config.schema == "source": |
|
features = datasets.Features( |
|
{ |
|
"id": datasets.Value("string"), |
|
"id_text1": datasets.Value("string"), |
|
"id_text2": datasets.Value("string"), |
|
"label": datasets.Value("int8"), |
|
} |
|
) |
|
|
|
elif self.config.schema == "bigbio_pairs": |
|
features = pairs_features |
|
|
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=features, |
|
homepage=_HOMEPAGE, |
|
license=str(_LICENSE), |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager) -> List[datasets.SplitGenerator]: |
|
"""Returns SplitGenerators.""" |
|
urls = _URLS[_DATASETNAME] |
|
data_dir = dl_manager.download_and_extract(urls) |
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={ |
|
"filepath": os.path.join( |
|
data_dir, |
|
"datasets/task_2_patient2patient_similarity/PPS_train.json", |
|
), |
|
"split": "train", |
|
"data_dir": data_dir, |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TEST, |
|
gen_kwargs={ |
|
"filepath": os.path.join( |
|
data_dir, |
|
"datasets/task_2_patient2patient_similarity/PPS_test.json", |
|
), |
|
"split": "test", |
|
"data_dir": data_dir, |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.VALIDATION, |
|
gen_kwargs={ |
|
"filepath": os.path.join( |
|
data_dir, |
|
"datasets/task_2_patient2patient_similarity/PPS_dev.json", |
|
), |
|
"split": "dev", |
|
"data_dir": data_dir, |
|
}, |
|
), |
|
] |
|
|
|
def _generate_examples( |
|
self, filepath, split: str, data_dir: str |
|
) -> Tuple[int, Dict]: |
|
"""Yields examples as (key, example) tuples.""" |
|
|
|
uid = 0 |
|
|
|
def lookup_text(patient_uid: str, df: pd.DataFrame) -> str: |
|
try: |
|
return df.loc[patient_uid]["patient"] |
|
except KeyError: |
|
return "" |
|
|
|
with open(filepath, "r") as j: |
|
ret_file = json.load(j) |
|
|
|
if self.config.schema == "source": |
|
|
|
for key, (id1, id2, label) in enumerate(ret_file): |
|
feature_dict = { |
|
"id": uid, |
|
"id_text1": id1, |
|
"id_text2": id2, |
|
"label": label, |
|
} |
|
uid += 1 |
|
yield key, feature_dict |
|
|
|
elif self.config.schema == "bigbio_pairs": |
|
source_files = os.path.join(data_dir, f"datasets/PMC-Patients_{split}.json") |
|
src_frame = pd.read_json(source_files, encoding="utf8").set_index( |
|
"patient_uid" |
|
) |
|
for key, (id1, id2, label) in enumerate(ret_file): |
|
text_1 = lookup_text(id1, src_frame) |
|
text_2 = lookup_text(id2, src_frame) |
|
|
|
|
|
if text_1 == "" or text_2 == "": |
|
continue |
|
feature_dict = { |
|
"id": uid, |
|
"document_id": "NULL", |
|
"text_1": text_1, |
|
"text_2": text_2, |
|
"label": label, |
|
} |
|
uid += 1 |
|
yield key, feature_dict |
|
|