# coding=utf-8 # Copyright 2022 The HuggingFace Datasets Authors and the current dataset script contributor. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ PPS dataset is a list of triplets. Each entry is in format (patient_uid_1, patient_uid_2, similarity) where similarity has three values:0, 1, 2, indicating corresponding similarity. """ import json import os from typing import Dict, List, Tuple import datasets import pandas as pd from .bigbiohub import pairs_features from .bigbiohub import BigBioConfig from .bigbiohub import Tasks _LANGUAGES = ['English'] _PUBMED = True _LOCAL = False _CITATION = """\ @misc{zhao2022pmcpatients, title={PMC-Patients: A Large-scale Dataset of Patient Notes and Relations Extracted from Case Reports in PubMed Central}, author={Zhengyun Zhao and Qiao Jin and Sheng Yu}, year={2022}, eprint={2202.13876}, archivePrefix={arXiv}, primaryClass={cs.CL} }""" _DATASETNAME = "pmc_patients" _DISPLAYNAME = "PMC-Patients" _DESCRIPTION = """\ This dataset is used for calculating the similarity between two patient descriptions. """ _HOMEPAGE = "https://github.com/zhao-zy15/PMC-Patients" _LICENSE = 'Creative Commons Attribution Non Commercial Share Alike 4.0 International' _URLS = { _DATASETNAME: "https://drive.google.com/u/0/uc?id=1vFCLy_CF8fxPDZvDtHPR6Dl6x9l0TyvW&export=download", } _SUPPORTED_TASKS = [Tasks.SEMANTIC_SIMILARITY] _SOURCE_VERSION = "1.2.0" _BIGBIO_VERSION = "1.0.0" class PMCPatientsDataset(datasets.GeneratorBasedBuilder): """PPS dataset is a list of triplets. Each entry is in format (patient_uid_1, patient_uid_2, similarity) and their respective texts. where similarity has three values:0, 1, 2, indicating corresponding similarity. """ SOURCE_VERSION = datasets.Version(_SOURCE_VERSION) BIGBIO_VERSION = datasets.Version(_BIGBIO_VERSION) BUILDER_CONFIGS = [ BigBioConfig( name="pmc_patients_source", version=SOURCE_VERSION, description="pmc_patients source schema", schema="source", subset_id="pmc_patients", ), BigBioConfig( name="pmc_patients_bigbio_pairs", version=BIGBIO_VERSION, description="pmc_patients BigBio schema", schema="bigbio_pairs", subset_id="pmc_patients", ), ] DEFAULT_CONFIG_NAME = "pmc_patients_source" def _info(self) -> datasets.DatasetInfo: if self.config.schema == "source": features = datasets.Features( { "id": datasets.Value("string"), "id_text1": datasets.Value("string"), "id_text2": datasets.Value("string"), "label": datasets.Value("int8"), } ) elif self.config.schema == "bigbio_pairs": features = pairs_features return datasets.DatasetInfo( description=_DESCRIPTION, features=features, homepage=_HOMEPAGE, license=str(_LICENSE), citation=_CITATION, ) def _split_generators(self, dl_manager) -> List[datasets.SplitGenerator]: """Returns SplitGenerators.""" urls = _URLS[_DATASETNAME] data_dir = dl_manager.download_and_extract(urls) return [ datasets.SplitGenerator( name=datasets.Split.TRAIN, gen_kwargs={ "filepath": os.path.join( data_dir, "datasets/task_2_patient2patient_similarity/PPS_train.json", ), "split": "train", "data_dir": data_dir, }, ), datasets.SplitGenerator( name=datasets.Split.TEST, gen_kwargs={ "filepath": os.path.join( data_dir, "datasets/task_2_patient2patient_similarity/PPS_test.json", ), "split": "test", "data_dir": data_dir, }, ), datasets.SplitGenerator( name=datasets.Split.VALIDATION, gen_kwargs={ "filepath": os.path.join( data_dir, "datasets/task_2_patient2patient_similarity/PPS_dev.json", ), "split": "dev", "data_dir": data_dir, }, ), ] def _generate_examples( self, filepath, split: str, data_dir: str ) -> Tuple[int, Dict]: """Yields examples as (key, example) tuples.""" uid = 0 def lookup_text(patient_uid: str, df: pd.DataFrame) -> str: try: return df.loc[patient_uid]["patient"] except KeyError: return "" with open(filepath, "r") as j: ret_file = json.load(j) if self.config.schema == "source": for key, (id1, id2, label) in enumerate(ret_file): feature_dict = { "id": uid, "id_text1": id1, "id_text2": id2, "label": label, } uid += 1 yield key, feature_dict elif self.config.schema == "bigbio_pairs": source_files = os.path.join(data_dir, f"datasets/PMC-Patients_{split}.json") src_frame = pd.read_json(source_files, encoding="utf8").set_index( "patient_uid" ) for key, (id1, id2, label) in enumerate(ret_file): text_1 = lookup_text(id1, src_frame) text_2 = lookup_text(id2, src_frame) # test/dev splits are faulty and may not contain the patient_uid # if any of the lookup texts are empty skip the sample if text_1 == "" or text_2 == "": continue feature_dict = { "id": uid, "document_id": "NULL", "text_1": text_1, "text_2": text_2, "label": label, } uid += 1 yield key, feature_dict