|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
""" |
|
PubTator Central (PTC, https://www.ncbi.nlm.nih.gov/research/pubtator/) [1] is a web service for |
|
exploring and retrieving bioconcept annotations in full text biomedical articles. PTC provides |
|
automated annotations from state-of-the-art text mining systems for genes/proteins, genetic |
|
variants, diseases, chemicals, species and cell lines, all available for immediate download. PTC |
|
annotates PubMed (30 million abstracts), the PMC Open Access Subset and the Author Manuscript |
|
Collection (3 million full text articles). Updated entity identification methods and a |
|
disambiguation module [2] based on cutting-edge deep learning techniques provide increased accuracy. |
|
This FTP repository aggregated all the bio-entity annotations in PTC in tab-separated text format. |
|
The files are expected to be updated monthly. |
|
|
|
REFERENCE: |
|
--------------------------------------------------------------------------- |
|
[1] Wei C-H, Allot A, Leaman R and Lu Z (2019) "PubTator Central: Automated Concept Annotation for |
|
Biomedical Full Text Articles", Nucleic Acids Res. |
|
[2] wei C-H, et al., (2019) "Biomedical Mention Disambiguation Using a Deep Learning Approach", |
|
ACM-BCB 2019, September 7-10, 2019, Niagara Falls, NY, USA. |
|
[3] Wei C-H, Kao H-Y, Lu Z (2015) "GNormPlus: An Integrative Approach for Tagging Gene, Gene Family |
|
and Protein Domain", 2015, Article ID 918710 |
|
[4] Leaman R and Lu Z (2013) "TaggerOne: joint named entity recognition and normalization with |
|
semi-Markov Models", Bioinformatics, 32(18): 839-2846 |
|
[5] Wei C-H, Kao H-Y, Lu Z (2012) "SR4GN: a species recognition software tool for gene normalization", |
|
PLoS ONE,7(6):e38460 |
|
[6] Wei C-H, et al., (2017) "Integrating genomic variant information from literature with dbSNP and |
|
ClinVar for precision medicine", Bioinformatics,34(1): 80-87 |
|
""" |
|
|
|
|
|
from typing import Dict, Iterator, List, Tuple |
|
|
|
import datasets |
|
from bioc import pubtator |
|
|
|
from .bigbiohub import kb_features |
|
from .bigbiohub import BigBioConfig |
|
from .bigbiohub import Tasks |
|
|
|
_LANGUAGES = ['English'] |
|
_PUBMED = True |
|
_LOCAL = False |
|
_CITATION = """\ |
|
@article{10.1093/nar/gkz389, |
|
title = {{PubTator central: automated concept annotation for biomedical full text articles}}, |
|
author = {Wei, Chih-Hsuan and Allot, Alexis and Leaman, Robert and Lu, Zhiyong}, |
|
year = 2019, |
|
month = {05}, |
|
journal = {Nucleic Acids Research}, |
|
volume = 47, |
|
number = {W1}, |
|
pages = {W587-W593}, |
|
doi = {10.1093/nar/gkz389}, |
|
issn = {0305-1048}, |
|
url = {https://doi.org/10.1093/nar/gkz389}, |
|
eprint = {https://academic.oup.com/nar/article-pdf/47/W1/W587/28880193/gkz389.pdf} |
|
} |
|
""" |
|
|
|
_DATASETNAME = "pubtator_central" |
|
_DISPLAYNAME = "PubTator Central" |
|
|
|
_DESCRIPTION = """\ |
|
PubTator Central (PTC, https://www.ncbi.nlm.nih.gov/research/pubtator/) is a web service for |
|
exploring and retrieving bioconcept annotations in full text biomedical articles. PTC provides |
|
automated annotations from state-of-the-art text mining systems for genes/proteins, genetic |
|
variants, diseases, chemicals, species and cell lines, all available for immediate download. PTC |
|
annotates PubMed (30 million abstracts), the PMC Open Access Subset and the Author Manuscript |
|
Collection (3 million full text articles). Updated entity identification methods and a |
|
disambiguation module based on cutting-edge deep learning techniques provide increased accuracy. |
|
""" |
|
|
|
_HOMEPAGE = "https://www.ncbi.nlm.nih.gov/research/pubtator/" |
|
|
|
_LICENSE = 'National Center fr Biotechnology Information PUBLIC DOMAIN NOTICE' |
|
|
|
_URLS = { |
|
"sample": "https://ftp.ncbi.nlm.nih.gov/pub/lu/PubTatorCentral/bioconcepts2pubtatorcentral.offset.sample", |
|
"full": "https://ftp.ncbi.nlm.nih.gov/pub/lu/PubTatorCentral/bioconcepts2pubtatorcentral.offset.gz", |
|
} |
|
|
|
_SUPPORTED_TASKS = [Tasks.NAMED_ENTITY_RECOGNITION, Tasks.NAMED_ENTITY_DISAMBIGUATION] |
|
|
|
_SOURCE_VERSION = "2022.01.08" |
|
_BIGBIO_VERSION = "1.0.0" |
|
|
|
|
|
_TYPE_TO_DB_NAME = { |
|
"Gene": "ncbi_gene", |
|
"Disease": "mesh", |
|
"Species": "ncbi_taxon", |
|
"Chemical": "mesh", |
|
"CellLine": "cellosaurus", |
|
} |
|
|
|
_DB_NAME_TO_URL = { |
|
"ncbi_gene": "https://www.ncbi.nlm.nih.gov/gene/", |
|
"mesh": "https://www.nlm.nih.gov/mesh/meshhome.html", |
|
"ncbi_taxon": "https://www.ncbi.nlm.nih.gov/taxonomy/", |
|
"cellosaurus": "https://web.expasy.org/cellosaurus/", |
|
"ncbi_dbsnp": "https://www.ncbi.nlm.nih.gov/snp/", |
|
"tmvar": "https://www.ncbi.nlm.nih.gov/research/bionlp/Tools/tmvar/", |
|
} |
|
|
|
|
|
class PubtatorCentralDataset(datasets.GeneratorBasedBuilder): |
|
"""PubTator Central""" |
|
|
|
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION) |
|
BIGBIO_VERSION = datasets.Version(_BIGBIO_VERSION) |
|
|
|
BUILDER_CONFIGS = [ |
|
|
|
BigBioConfig( |
|
name="pubtator_central_sample_source", |
|
version=SOURCE_VERSION, |
|
description="PubTator Central sample source schema", |
|
schema="source", |
|
subset_id="pubtator_central_sample", |
|
), |
|
|
|
BigBioConfig( |
|
name="pubtator_central_sample_bigbio_kb", |
|
version=BIGBIO_VERSION, |
|
description="PubTator Central sample BigBio schema", |
|
schema="bigbio_kb", |
|
subset_id="pubtator_central_sample", |
|
), |
|
|
|
BigBioConfig( |
|
name="pubtator_central_source", |
|
version=SOURCE_VERSION, |
|
description="PubTator Central source schema", |
|
schema="source", |
|
subset_id="pubtator_central", |
|
), |
|
|
|
BigBioConfig( |
|
name="pubtator_central_bigbio_kb", |
|
version=BIGBIO_VERSION, |
|
description="PubTator Central BigBio schema", |
|
schema="bigbio_kb", |
|
subset_id="pubtator_central", |
|
), |
|
] |
|
|
|
DEFAULT_CONFIG_NAME = "pubtator_central_source" |
|
|
|
def _info(self) -> datasets.DatasetInfo: |
|
|
|
if self.config.schema == "source": |
|
features = datasets.Features( |
|
{ |
|
"pmid": datasets.Value("string"), |
|
"title": datasets.Value("string"), |
|
"abstract": datasets.Value("string"), |
|
"mentions": [ |
|
{ |
|
"concept_id": datasets.Value("string"), |
|
"type": datasets.Value("string"), |
|
"text": datasets.Value("string"), |
|
"offsets": datasets.Sequence(datasets.Value("int32")), |
|
} |
|
], |
|
} |
|
) |
|
|
|
elif self.config.schema == "bigbio_kb": |
|
features = kb_features |
|
|
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=features, |
|
homepage=_HOMEPAGE, |
|
license=str(_LICENSE), |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager) -> List[datasets.SplitGenerator]: |
|
"""Returns SplitGenerators.""" |
|
urls = ( |
|
_URLS["sample"] |
|
if self.config.subset_id.endswith("sample") |
|
else _URLS["full"] |
|
) |
|
data_dir = dl_manager.download_and_extract(urls) |
|
|
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={ |
|
"filepath": data_dir, |
|
"split": "train", |
|
}, |
|
), |
|
] |
|
|
|
def _generate_examples( |
|
self, filepath: str, split: str |
|
) -> Iterator[Tuple[str, Dict]]: |
|
if self.config.schema == "source": |
|
for source_example in self._pubtator_to_source(filepath): |
|
yield source_example["pmid"], source_example |
|
|
|
elif self.config.schema == "bigbio_kb": |
|
for kb_example in self._pubtator_to_bigbio_kb(filepath): |
|
yield kb_example["id"], kb_example |
|
|
|
@staticmethod |
|
def _pubtator_to_source(filepath: Dict) -> Iterator[Dict]: |
|
with open(filepath, "r") as f: |
|
for doc in pubtator.iterparse(f): |
|
source_example = { |
|
"pmid": doc.pmid, |
|
"title": doc.title, |
|
"abstract": doc.abstract, |
|
"mentions": [ |
|
{ |
|
"concept_id": mention.id, |
|
"type": mention.type, |
|
"text": mention.text, |
|
"offsets": [mention.start, mention.end], |
|
} |
|
for mention in doc.annotations |
|
], |
|
} |
|
yield source_example |
|
|
|
def _pubtator_to_bigbio_kb(self, filepath: Dict) -> Iterator[Dict]: |
|
with open(filepath, "r") as f: |
|
unified_example = {} |
|
for doc in pubtator.iterparse(f): |
|
unified_example["id"] = doc.pmid |
|
unified_example["document_id"] = doc.pmid |
|
|
|
unified_example["passages"] = [ |
|
{ |
|
"id": doc.pmid + "_title", |
|
"type": "title", |
|
"text": [doc.title], |
|
"offsets": [[0, len(doc.title)]], |
|
}, |
|
{ |
|
"id": doc.pmid + "_abstract", |
|
"type": "abstract", |
|
"text": [doc.abstract], |
|
"offsets": [ |
|
[ |
|
|
|
len(doc.title) + 1, |
|
len(doc.title) + 1 + len(doc.abstract), |
|
] |
|
], |
|
}, |
|
] |
|
|
|
unified_entities = [] |
|
for i, entity in enumerate(doc.annotations): |
|
|
|
unified_entity_id = "_".join([doc.pmid, entity.id, str(i)]) |
|
|
|
db_name = self._get_db_name(entity) |
|
unified_entities.append( |
|
{ |
|
"id": unified_entity_id, |
|
"type": entity.type, |
|
"text": [entity.text], |
|
"offsets": [[entity.start, entity.end]], |
|
"normalized": [{"db_name": db_name, "db_id": entity.id}], |
|
} |
|
) |
|
|
|
unified_example["entities"] = unified_entities |
|
unified_example["relations"] = [] |
|
unified_example["events"] = [] |
|
unified_example["coreferences"] = [] |
|
|
|
yield unified_example |
|
|
|
@staticmethod |
|
def _get_db_name(entity: pubtator.PubTatorAnn) -> str: |
|
if entity.type in _TYPE_TO_DB_NAME: |
|
db_name = _TYPE_TO_DB_NAME[entity.type] |
|
elif entity.type in ["Mutation", "ProteinMutation", "DNAMutation"]: |
|
|
|
if entity.id.startswith("tmVar"): |
|
db_name = "tmVar" |
|
else: |
|
db_name = "ncbi_dbsnp" |
|
else: |
|
db_name = "unknown" |
|
return db_name |
|
|