|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""Descriptions of genetic variations and their effect are widely spread across the biomedical literature. However, |
|
finding all mentions of a specific variation, or all mentions of variations in a specific gene, is difficult to |
|
achieve due to the many ways such variations are described. Here, we describe SETH, a tool for the recognition of |
|
variations from text and their subsequent normalization to dbSNP or UniProt. SETH achieves high precision and recall |
|
on several evaluation corpora of PubMed abstracts. It is freely available and encompasses stand-alone scripts for |
|
isolated application and evaluation as well as a thorough documentation for integration into other applications. |
|
The script loads dataset in bigbio schema (using knowledgebase schema: schemas/kb) AND/OR source (default) schema """ |
|
|
|
from pathlib import Path |
|
from typing import Dict, List, Tuple |
|
|
|
import datasets |
|
|
|
from .bigbiohub import kb_features |
|
from .bigbiohub import BigBioConfig |
|
from .bigbiohub import Tasks |
|
from .bigbiohub import parse_brat_file |
|
from .bigbiohub import brat_parse_to_bigbio_kb |
|
|
|
_LANGUAGES = ['English'] |
|
_PUBMED = True |
|
_LOCAL = False |
|
_CITATION = """\ |
|
@Article{SETH2016, |
|
Title = {SETH detects and normalizes genetic variants in text.}, |
|
Author = {Thomas, Philippe and Rockt{"{a}}schel, Tim and Hakenberg, J{"{o}}rg and Lichtblau, Yvonne and Leser, Ulf}, |
|
Journal = {Bioinformatics}, |
|
Year = {2016}, |
|
Month = {Jun}, |
|
Doi = {10.1093/bioinformatics/btw234}, |
|
Language = {eng}, |
|
Medline-pst = {aheadofprint}, |
|
Pmid = {27256315}, |
|
Url = {http://dx.doi.org/10.1093/bioinformatics/btw234 |
|
} |
|
""" |
|
|
|
_DATASETNAME = "seth_corpus" |
|
_DISPLAYNAME = "SETH Corpus" |
|
|
|
_DESCRIPTION = ( |
|
"""SNP named entity recognition corpus consisting of 630 PubMed citations.""" |
|
) |
|
|
|
_HOMEPAGE = "https://github.com/rockt/SETH" |
|
|
|
_LICENSE = 'Apache License 2.0' |
|
_URLS = { |
|
"source": "https://github.com/rockt/SETH/archive/refs/heads/master.zip", |
|
"bigbio_kb": "https://github.com/rockt/SETH/archive/refs/heads/master.zip", |
|
} |
|
|
|
_SUPPORTED_TASKS = [Tasks.NAMED_ENTITY_RECOGNITION, Tasks.RELATION_EXTRACTION] |
|
|
|
_SOURCE_VERSION = "1.0.0" |
|
_BIGBIO_VERSION = "1.0.0" |
|
|
|
|
|
class SethCorpusDataset(datasets.GeneratorBasedBuilder): |
|
"""SNP named entity recognition corpus consisting of 630 PubMed citations.""" |
|
|
|
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION) |
|
BIGBIO_VERSION = datasets.Version(_BIGBIO_VERSION) |
|
|
|
BUILDER_CONFIGS = [ |
|
BigBioConfig( |
|
name="seth_corpus_source", |
|
version=SOURCE_VERSION, |
|
description="SETH corpus source schema", |
|
schema="source", |
|
subset_id="seth_corpus", |
|
), |
|
BigBioConfig( |
|
name="seth_corpus_bigbio_kb", |
|
version=BIGBIO_VERSION, |
|
description="SETH corpus BigBio schema", |
|
schema="bigbio_kb", |
|
subset_id="seth_corpus", |
|
), |
|
] |
|
|
|
DEFAULT_CONFIG_NAME = "seth_corpus_source" |
|
|
|
def _info(self) -> datasets.DatasetInfo: |
|
|
|
if self.config.schema == "source": |
|
|
|
features = datasets.Features( |
|
{ |
|
"id": datasets.Value("string"), |
|
"document_id": datasets.Value("string"), |
|
"text": datasets.Value("string"), |
|
"text_bound_annotations": [ |
|
{ |
|
"offsets": datasets.Sequence([datasets.Value("int32")]), |
|
"text": datasets.Sequence(datasets.Value("string")), |
|
"type": datasets.Value("string"), |
|
"id": datasets.Value("string"), |
|
} |
|
], |
|
"events": [ |
|
{ |
|
"trigger": datasets.Value("string"), |
|
"id": datasets.Value("string"), |
|
"type": datasets.Value("string"), |
|
"arguments": datasets.Sequence( |
|
{ |
|
"role": datasets.Value("string"), |
|
"ref_id": datasets.Value("string"), |
|
} |
|
), |
|
} |
|
], |
|
"relations": [ |
|
{ |
|
"id": datasets.Value("string"), |
|
"head": { |
|
"ref_id": datasets.Value("string"), |
|
"role": datasets.Value("string"), |
|
}, |
|
"tail": { |
|
"ref_id": datasets.Value("string"), |
|
"role": datasets.Value("string"), |
|
}, |
|
"type": datasets.Value("string"), |
|
} |
|
], |
|
"equivalences": [ |
|
{ |
|
"id": datasets.Value("string"), |
|
"ref_ids": datasets.Sequence(datasets.Value("string")), |
|
} |
|
], |
|
"attributes": [ |
|
{ |
|
"id": datasets.Value("string"), |
|
"type": datasets.Value("string"), |
|
"ref_id": datasets.Value("string"), |
|
"value": datasets.Value("string"), |
|
} |
|
], |
|
"normalizations": [ |
|
{ |
|
"id": datasets.Value("string"), |
|
"type": datasets.Value("string"), |
|
"ref_id": datasets.Value("string"), |
|
"resource_name": datasets.Value("string"), |
|
"cuid": datasets.Value("string"), |
|
"text": datasets.Value("string"), |
|
} |
|
], |
|
}, |
|
) |
|
|
|
elif self.config.schema == "bigbio_kb": |
|
features = kb_features |
|
|
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=features, |
|
homepage=_HOMEPAGE, |
|
license=str(_LICENSE), |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager) -> List[datasets.SplitGenerator]: |
|
"""Returns SplitGenerators.""" |
|
|
|
urls = _URLS[self.config.schema] |
|
data_dir = Path(dl_manager.download_and_extract(urls)) |
|
|
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={ |
|
"filepath": data_dir / "SETH-master" / "resources" / "SETH-corpus", |
|
"corpus_file": "corpus.txt", |
|
"split": "train", |
|
}, |
|
), |
|
] |
|
|
|
def _generate_examples( |
|
self, filepath: Path, corpus_file: str, split: str |
|
) -> Tuple[int, Dict]: |
|
"""Yields examples as (key, example) tuples.""" |
|
|
|
if self.config.schema == "source": |
|
with open(filepath / corpus_file, encoding="utf-8") as f: |
|
contents = f.readlines() |
|
for guid, content in enumerate(contents): |
|
file_name, text = content.split("\t") |
|
example = parse_brat_file( |
|
filepath / "annotations" / f"{file_name}.ann" |
|
) |
|
example["id"] = str(guid) |
|
example["text"] = text |
|
yield guid, example |
|
|
|
elif self.config.schema == "bigbio_kb": |
|
with open(filepath / corpus_file, encoding="utf-8") as f: |
|
contents = f.readlines() |
|
for guid, content in enumerate(contents): |
|
file_name, text = content.split("\t") |
|
example = parse_brat_file( |
|
filepath / "annotations" / f"{file_name}.ann" |
|
) |
|
|
|
|
|
|
|
|
|
if example["document_id"] == "11058905": |
|
example["events"] = [] |
|
|
|
example["text"] = text |
|
example = brat_parse_to_bigbio_kb(example) |
|
example["id"] = str(guid) |
|
yield guid, example |
|
else: |
|
raise ValueError(f"Invalid config: {self.config.name}") |
|
|