Datasets:

Languages:
English
ArXiv:
License:
tmvar_v3 / tmvar_v3.py
masaenger's picture
Update tmvar_v3 based on git version 842f9dd
288f10e verified
# coding=utf-8
# Copyright 2022 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
This dataset contains 500 PubMed articles manually annotated with mutation
mentions of various kinds and dbsnp normalizations for each of them. In
addition, it contains variant normalization options such as allele-specific
identifiers from the ClinGen Allele Registry It can be used for NER tasks and
NED tasks, This dataset does NOT have splits.
"""
import itertools
import datasets
from bioc import pubtator
from .bigbiohub import BigBioConfig, Tasks, kb_features
_CITATION = """\
@article{wei2022tmvar,
title={tmVar 3.0: an improved variant concept recognition and normalization tool},
author={Wei, Chih-Hsuan and Allot, Alexis and Riehle, Kevin and Milosavljevic, Aleksandar and Lu, Zhiyong},
journal={Bioinformatics},
volume={38},
number={18},
pages={4449--4451},
year={2022},
publisher={Oxford University Press}
}
"""
_LANGUAGES = ["English"]
_PUBMED = True
_LOCAL = False
_DATASETNAME = "tmvar_v3"
_DISPLAYNAME = "tmVar v3"
_DESCRIPTION = """\
This dataset contains 500 PubMed articles manually annotated with mutation \
mentions of various kinds and dbsnp normalizations for each of them. In \
addition, it contains variant normalization options such as allele-specific \
identifiers from the ClinGen Allele Registry It can be used for NER tasks and \
NED tasks, This dataset does NOT have splits.
"""
_HOMEPAGE = "https://github.com/ncbi/tmVar3"
_LICENSE = "UNKNOWN"
_URLS = {_DATASETNAME: "ftp://ftp.ncbi.nlm.nih.gov/pub/lu/tmVar3/tmVar3Corpus.txt"}
_SUPPORTED_TASKS = [Tasks.NAMED_ENTITY_RECOGNITION, Tasks.NAMED_ENTITY_DISAMBIGUATION]
_SOURCE_VERSION = "3.0.0"
_BIGBIO_VERSION = "1.0.0"
logger = datasets.utils.logging.get_logger(__name__)
class TmvarV3Dataset(datasets.GeneratorBasedBuilder):
"""
This dataset contains 500 PubMed articles manually annotated with mutation
mentions of various kinds and various normalizations for each of them.
"""
DEFAULT_CONFIG_NAME = "tmvar_v3_source"
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION)
BIGBIO_VERSION = datasets.Version(_BIGBIO_VERSION)
BUILDER_CONFIGS = []
BUILDER_CONFIGS.append(
BigBioConfig(
name=f"{_DATASETNAME}_source",
version=SOURCE_VERSION,
description=f"{_DATASETNAME} source schema",
schema="source",
subset_id=f"{_DATASETNAME}",
)
)
BUILDER_CONFIGS.append(
BigBioConfig(
name=f"{_DATASETNAME}_source_fixed",
version=SOURCE_VERSION,
description=f"{_DATASETNAME} source schema with fixed offsets",
schema="source",
subset_id=f"{_DATASETNAME}",
)
)
BUILDER_CONFIGS.append(
BigBioConfig(
name=f"{_DATASETNAME}_bigbio_kb",
version=BIGBIO_VERSION,
description=f"{_DATASETNAME} BigBio schema",
schema="bigbio_kb",
subset_id=f"{_DATASETNAME}",
)
)
def _info(self) -> datasets.DatasetInfo:
type_to_db_mapping = {
"CorrespondingGene": "NCBI Gene",
"tmVar": "tmVar",
"dbSNP": "dbSNP",
"VariantGroup": "VariantGroup",
"NCBI Taxonomy": "NCBI Taxonomy",
}
if self.config.schema == "source":
features = datasets.Features(
{
"pmid": datasets.Value("string"),
"passages": [
{
"type": datasets.Value("string"),
"text": datasets.Sequence(datasets.Value("string")),
"offsets": datasets.Sequence([datasets.Value("int32")]),
}
],
"entities": [
{
"text": datasets.Sequence(datasets.Value("string")),
"offsets": datasets.Sequence([datasets.Value("int32")]),
"semantic_type_id": datasets.Value("string"),
"normalized": {
key: datasets.Sequence(datasets.Value("string"))
for key in type_to_db_mapping.keys()
},
}
],
}
)
elif self.config.schema == "bigbio_kb":
features = kb_features
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=features,
homepage=_HOMEPAGE,
license=str(_LICENSE),
citation=_CITATION,
)
def _split_generators(self, dl_manager):
"""Returns SplitGenerators."""
url = _URLS[_DATASETNAME]
test_filepath = dl_manager.download(url)
return [
datasets.SplitGenerator(
name=datasets.Split.TEST,
gen_kwargs={
"filepath": test_filepath,
},
)
]
def get_normalizations(self, id, type, doc_id):
"""
Given a type and a number of normalizations ids, this function returns a dictionary of the normalized ids
"""
base_dict = {
key: []
for key in [
"tmVar",
"CorrespondingGene",
"dbSNP",
"VariantGroup",
"NCBI Taxonomy",
]
}
ids = id.split(";")
if type in ["CellLine", "Species"]:
id_vals = ids[0].split(",")
base_dict["NCBI Taxonomy"] = id_vals
elif type == "Gene":
id_vals = ids[0].split(",")
base_dict["CorrespondingGene"] = id_vals
else:
for id in ids:
if "|" in id:
base_dict["tmVar"].append(id)
elif id[:2] == "rs":
base_dict["dbSNP"].append(id[2:])
elif ":" in id:
db_name, db_id = id.split(":")
if db_name == "RS#":
db_name = "dbSNP"
# Hacky fix below for doc ID: 18272172
elif db_name == "Va1iantGroup":
db_name = "VariantGroup"
elif db_name == "Gene":
db_name = "CorrespondingGene"
elif db_name == "Disease":
continue
db_ids = db_id.split(",")
base_dict[db_name].extend(db_ids)
else:
logger.info(
f"Malformed normalization in Document {doc_id}. Type: {type}, Number: {id}"
)
continue
return base_dict
def _correct_wrong_offsets(self, entities, pmid):
"""
Offsets in the document 21904390 is wrong. Correct them manually.
"""
wrong_offsets = {
"21904390": {
(343, 347): [342, 346],
(753, 757): [751, 755],
(1156, 1160): [1153, 1157],
(1487, 1491): [1483, 1487],
(1631, 1635): [1627, 1631],
(1645, 1659): [1640, 1654],
(2043, 2047): [2037, 2041],
}
}
if pmid in wrong_offsets:
for entity in entities:
if (entity["offsets"][0][0], entity["offsets"][0][1]) in wrong_offsets[
pmid
]:
entity["offsets"][0] = wrong_offsets[pmid][
(entity["offsets"][0][0], entity["offsets"][0][1])
]
return entities
def pubtator_to_source(self, filepath):
"""
Converts pubtator to source schema
"""
with open(filepath, "r", encoding="utf8") as fstream:
for doc in pubtator.iterparse(fstream):
document = {}
document["pmid"] = doc.pmid
title = doc.title
abstract = doc.abstract
document["passages"] = [
{"type": "title", "text": [title], "offsets": [[0, len(title)]]},
{
"type": "abstract",
"text": [abstract],
"offsets": [[len(title) + 1, len(title) + len(abstract) + 1]],
},
]
document["entities"] = [
{
"offsets": [[mention.start, mention.end]],
"text": [mention.text],
"semantic_type_id": mention.type,
"normalized": self.get_normalizations(
mention.id,
mention.type,
doc.pmid,
),
}
for mention in doc.annotations
]
if "_fixed" in self.config.name:
document["entities"] = self._correct_wrong_offsets(
document["entities"], doc.pmid
)
yield document
def pubtator_to_bigbio_kb(self, filepath):
"""
Converts pubtator to bigbio_kb schema
"""
with open(filepath, "r", encoding="utf8") as fstream:
uid = itertools.count(0)
for doc in pubtator.iterparse(fstream):
document = {}
title = doc.title
abstract = doc.abstract
document["id"] = next(uid)
document["document_id"] = doc.pmid
document["passages"] = [
{
"id": next(uid),
"type": "title",
"text": [title],
"offsets": [[0, len(title)]],
},
{
"id": next(uid),
"type": "abstract",
"text": [abstract],
"offsets": [[len(title) + 1, len(title) + len(abstract) + 1]],
},
]
document["entities"] = [
{
"id": next(uid),
"offsets": [[mention.start, mention.end]],
"text": [mention.text],
"type": mention.type,
"normalized": self.get_normalizations(
mention.id, mention.type, doc.pmid
),
}
for mention in doc.annotations
]
document["entities"] = self._correct_wrong_offsets(
document["entities"], doc.pmid
)
db_id_mapping = {
"dbSNP": "dbSNP",
"CorrespondingGene": "NCBI Gene",
"tmVar": "dbSNP",
}
for entity in document["entities"]:
normalized_bigbio_kb = []
for key, id_list in entity["normalized"].items():
if key in db_id_mapping.keys():
normalized_bigbio_kb.extend(
[
{"db_name": db_id_mapping[key], "db_id": id}
for id in id_list
]
)
entity["normalized"] = normalized_bigbio_kb
document["relations"] = []
document["events"] = []
document["coreferences"] = []
yield document
def _generate_examples(self, filepath):
"""Yields examples as (key, example) tuples."""
if self.config.schema == "source":
for source_example in self.pubtator_to_source(filepath):
yield source_example["pmid"], source_example
elif self.config.schema == "bigbio_kb":
for bigbio_example in self.pubtator_to_bigbio_kb(filepath):
yield bigbio_example["document_id"], bigbio_example