content
stringlengths
39
9.28k
sha1
stringlengths
40
40
id
int64
8
710k
def _GetCurrentCommand(trace=None, include_separators=True): """Returns current command for the purpose of generating help text.""" if trace: current_command = trace.GetCommand(include_separators=include_separators) else: current_command = '' return current_command
aad81fe61ef31f04b5d9e3b1fd3de98a3e0f0258
284,330
import hashlib def activity_hash(dataset): """Return the hash string that uniquely identifies an activity. Uses the following fields, in order: * name * reference product * unit * location * start date * end date An empty string is used if a field isn't present. All fields are cast to lower case. """ fields = ( "name", "reference product", "unit", "location", "start date", "end date", ) string = "".join(dataset.get(field, '').lower() for field in fields) return hashlib.md5(string.encode('utf-8')).hexdigest()
cdec16ba7d018fb0b45739d394d8e44653bd359c
582,714
import math def read_file(input_file: str) -> dict: """ Read the file and extract relevant data Parameters ---------- input_file : string HiTrack filename Returns ------- data: dict of lists of lists {'gps': list of lists, 'alti': list of lists, 'hr': list of lists, 'cad': list of lists} """ def _normalize_timestamp(timestamp: float) -> float: """ Normalize the timestamp Timestamps taken from different devices can have different values. Most common are seconds (i.e. t=1.543646826E9) or microseconds (i.e. t=1.55173212E12). This method implements a generic normalization function that transform all values to valid unix timestamps (integer with 10 digits). """ oom = int(math.log10(timestamp)) if oom == 9: return timestamp divisor = 10 ** (oom - 9) if oom > 9 else 0.1 ** (9 - oom) return timestamp / divisor print('---- Input File ----') print('reading: ', end='') try: """ The lap list will contain lap data will contain start-stop times between pauzes identified in the location records. These are required to generate the laps in the output TCX file later. """ data = {'gps': [], 'alti': [], 'hr': [], 'cad': [], 'lap': []} with open(input_file) as f: lap_start_stop = [] lap_start_stop.append(0) # Start time of lap lap_start_stop.append(0) # Stop time of lap for line in f: # Loop over file line by line holding_list = [] if line[0:6] == 'tp=lbs': # Location lines for x in [6,3,4,0,0,0,0]: # time, lat, long, [alti], [dist], [hr], [cad] if x == 0: holding_list.append('') # Fill in blanks with blank else: holding_list.append(float(line.split('=')[x].split(';')[0])) """ Do not try to normalize time for 'Pauze' records. E.g. tp=lbs;k=<a number>;lat=90.0;lon=-80.0;alt=0.0;t=0.0; Recognized by time = 0, lat = 90, long = -80 """ if holding_list[0] != 0 and holding_list[1] != 90 and holding_list[2] != -80: holding_list[0] = _normalize_timestamp(holding_list[0]) data['gps'].append(holding_list) if lap_start_stop[0] == 0: # First valid time for new lap. Store it in start time (index 0). lap_start_stop[0] = holding_list[0] if lap_start_stop[1] < holding_list[0]: # Later stop time for current lap. Store it in stop time (index 1). lap_start_stop[1] = holding_list[0] else: """ Pauze record detected. E.g. tp=lbs;k=<a number>;lat=90.0;lon=-80.0;alt=0.0;t=0.0; Recognized by time = 0, lat = 90, long = -80 Add the record to the gps data list. When generating the TCX XML this record can be used to create a new 'lap' with start time the time of the next record (if any, e.g. when workout was first pauzed and then stopped without resuming.) Store lap record in data and create a new one. """ data['lap'].append(lap_start_stop) lap_start_stop = [] lap_start_stop.append(0) lap_start_stop.append(0) elif line[0:6] == 'tp=h-r': # Heart-rate lines for x in [2,0,0,0,0,3,0]: #time, [lat], [long], [alti], [dist], hr, [cad] if x == 0: holding_list.append('') elif x == 2: holding_list.append(int(float(line.split('=')[x].split(';')[0]))) else: holding_list.append(int(line.split('=')[x].split(';')[0])) holding_list[0] = _normalize_timestamp(holding_list[0]) data['hr'].append(holding_list) elif line[0:6] == 'tp=s-r': # Cadence lines for x in [2,0,0,0,0,0,3]: #time, [lat], [long], [alti], [dist], [hr], cad if x == 0: holding_list.append('') elif x == 2: holding_list.append(int(float(line.split('=')[x].split(';')[0]))) else: holding_list.append(int(line.split('=')[x].split(';')[0])) holding_list[0] = _normalize_timestamp(holding_list[0]) data['cad'].append(holding_list) elif line[0:7] == 'tp=alti': # Altitude lines for x in [2,0,0,3,0,0,0]: #time, [lat], [long], alti, [dist], [hr], [cad] if x == 0: holding_list.append('') elif x == 2: holding_list.append(int(float(line.split('=')[x].split(';')[0]))) else: holding_list.append(float(line.split('=')[x].split(';')[0])) holding_list[0] = _normalize_timestamp(holding_list[0]) data['alti'].append(holding_list) """ Save (last) lap data. When the exercise wasn't pauzed and/or no pauze/stop record is generated as the last location record, store the single lap record here. """ if lap_start_stop[0] != 0: data['lap'].append(lap_start_stop) # Sort GPS data by date for distance computation data['gps'] = sorted(data['gps'], key=lambda x : x[0]) except: print('FAILED') exit() print('OKAY') return data
0bd52a1741d861e1f13cdec212938a9a727ea2e0
244,615
import re def strip_html_tags(text): """ Strip HTML tags from text generated from Markdown script :param text: text in HTML :return: text without HTML Tags """ htmlPattern = re.compile(r'<\w+>|</\w+>') return htmlPattern.sub('', text)
a93fdaefa4d20dfcc647f5a3cd8fa801709668a4
120,821
def labelwell(platemap, labelby, iterrange, **kwargs): """Returns label for each row of a stipulated column. Used to return the appropriate, formatted label from a specified platemap at every well. Empty wells will always return 'empty', wells without a label will return a blank string. :param platemap: Platemap that contains the required labels :type platemap: pandas dataframe :param labelby: Dataframe column to label by, for example 'Compound', 'Protein', 'Concentration', 'Concentration Units', 'Contents' or 'Type' :type labelby: str :param iterrange: Number of instances to itterate over, typically the size of the platemap :type iterrange: int :param **kwargs: The str_format (str) is accepted as a keyword argument, it determines whether the value is to be displayed in scientific notation or percentage 1 d.p. :return: string corresponding to the value located in column labelby and row iterrange of the platemap :rtype: str """ if 'str_format' in kwargs and kwargs['str_format'] == 'scinot': # if scinot parameter is true, format the value in scientific notation return "%.2E" % (platemap[labelby].iloc[iterrange]) elif 'str_format' in kwargs and kwargs['str_format'] == 'percent': return "%.1f" % (platemap[labelby].iloc[iterrange]) else: # get the value from 'labelby' column and 'iterrange' row return str(platemap[labelby].iloc[iterrange]).replace(" ", "\n")
28f06612efb07e67045cc18edda922aee0410499
496,705
def sum_abs_of_all(sequence): """ What comes in: -- A sequence of numbers. What goes out: Returns the sum of the absolute values of the numbers. Side effects: None. Examples: sum_all([5, -1, 10, 4, -33]) would return 5 + 1 + 10 + 4 + 33, which is 53 sum_all([10, -30, -20]) would return 10 + 30 + 20, which is 60 Type hints: :type sequence: list or tuple (of numbers) """ # ------------------------------------------------------------------ # EXAMPLE 1. Iterates through a sequence of numbers, summing them. # ------------------------------------------------------------------ total = 0 for k in range(len(sequence)): total = total + abs(sequence[k]) return total
42d1a3e0aa5cf96ed11f898129a37f0b835d2bfb
348,268
def to_vintagestory_axis(ax): """Convert blender space to VS space: X -> Z Y -> X Z -> Y """ if "X" in ax: return "Z" elif "Y" in ax: return "X" elif "Z" in ax: return "Y"
ce585cf95d9663f566ae65d3baa46a2e793bf301
78,967
def palette_val(palette): """Convert palette to matplotlib palette. Args: palette List[tuple]: A list of color tuples. Returns: List[tuple[float]]: A list of RGB matplotlib color tuples. """ new_palette = [] for color in palette: color = [c / 255 for c in color] new_palette.append(tuple(color)) return new_palette
d04b8b7190e0a0a54700121219044ba4f29d025e
516,061
def _get_persons(event): """Get string of persons from event""" persons = [] for person in event['persons']: persons.append(person['public_name']) return ', '.join(persons)
b6201056e37c54ca336395205ee8a730b4ac0899
475,344
def repr_long_list(seq): """ >>> repr_long_list(list(range(100))) '[0, 1, 2, ..., 98, 99]' """ if len(seq) < 8: return repr(seq) else: return repr(seq[:3])[:-1] + ', ..., ' + repr(seq[-2:])[1:]
9978a1439d66cbd1c2015cb799cace7aeaac411c
69,612
def _rnl_daily(tmax, tmin, ea, fcd): """Daily net long-wave radiation (Eq. 17) Parameters ---------- tmax : ee.Image or ee.Number Daily maximum air temperature [C]. tmin : ee.Image or ee.Number Daily minimum air temperature [C]. ea : ee.Image or ee.Number Actual vapor pressure [kPa]. fcd : ee.Image or ee.Number cloudiness fraction. Returns ------- ee.Image or ee.Number Daily net long-wave radiation [MJ m-2 d-1]. Output data type will match "tmax" data type. Notes ----- rnl = 4.901E-9 * fcd * (0.34 - 0.14 * sqrt(ea)) * 0.5 * ((tmax + 273.16) ** 4 + (tmin + 273.16) ** 4)) """ return tmax.add(273.16).pow(4).add(tmin.add(273.16).pow(4)).multiply(0.5)\ .multiply(ea.sqrt().multiply(-0.14).add(0.34))\ .multiply(fcd).multiply(4.901E-9)
d639ac04b5ca9efb42ebf023398a0d79b437f31c
528,152
def c_terminal_proline(amino_acids): """ Is the right-most (C-terminal) amino acid a proline? """ return amino_acids[-1] == "P"
f54563ff59973d398e787186a1c390da03ff8999
36,768
def del_char_idx(inline, idx): """ Del char at the position given by the index idx. Args: inline(str): Input string. idx(int): An index position. """ return inline[:idx] + inline[idx+1:]
0f41fc9f0e6b4ce6b88af8f323e9f2f49501a5c2
322,593
def _modified_dict_keys_and_values(adict, func): """Get a new dictionary with key and value strings modified by func.""" return dict((func(key), func(value)) for key, value in adict.iteritems())
c46067fc15111f95c2d9bf07fefc75abc0b28f66
163,933
import torch def prepare_batch(sample, use_cuda=False): """Prepares a batch for training/validation by moving it to GPU Args: sample (dict | :obj:`torch.Tensor` | list): The batch to prepare use_cuda (bool): Move to cuda Returns: (dict | :obj:`torch.Tensor` | list): The batch, on GPU or CPU """ def _move_to_cuda(maybe_tensor): if torch.is_tensor(maybe_tensor): return maybe_tensor.cuda() elif isinstance(maybe_tensor, dict): return {key: _move_to_cuda(value) for key, value in maybe_tensor.items()} elif isinstance(maybe_tensor, list): return [_move_to_cuda(x) for x in maybe_tensor] else: return maybe_tensor if use_cuda: return _move_to_cuda(sample) else: return sample
ab7280f1b909a3e7ab5a823a3ddfbe2979b09e8a
233,340
def append_tag(image_tag, append_str): """ Appends image_tag with append_str :param image_tag: str, original image tag :param append_str: str, string to be appended """ return f"{image_tag}-{append_str}"
b35ad32be77d473237ff6c47afba253400a031b2
53,826
from datetime import datetime def get_file_age(file): """Returns the age of file. Args: file: A PosixPath object representing a file. Returns: An int represeting the age in days. """ return (datetime.today() - datetime.fromtimestamp(file.stat().st_mtime)).days
5d62ce19ea5b4fd2d34c4c1ecd0240d85b1af085
582,659
def _set_parameter(config, parameter): """ Checks for parameter value and sets if present :param config: bit configuration list :param parameter: the configuration item to set :return: string with value of parameter """ if parameter in config: return config[parameter] else: return ""
14a7d116db6731c8e0b287d9a73d701bbb404d26
147,421
def get_content_iter_with_chunk_size(content, chunk_size=1024): """ Return iterator for the provided content which will return chunks of the specified size. For performance reasons, larger chunks should be used with very large content to speed up the tests (since in some cases each iteration may result in an TCP send). """ # Ensure we still use multiple chunks and iterations assert (len(content) / chunk_size) >= 10 content = iter([content[i:i + chunk_size] for i in range(0, len(content), chunk_size)]) return content
c1550aef62e58b459feb66bde6c2a506e5de31be
96,273
def get_L_DHW_d_t(L_dashdash_k_d_t, L_dashdash_w_d_t, L_dashdash_s_d_t, L_dashdash_b1_d_t, L_dashdash_b2_d_t, L_dashdash_ba1_d_t): """1時間当たりの発電ユニットによる浴槽追焚を除く給湯熱負荷 (30) Args: L_dashdash_k_d_t(ndarray): 1時間当たりの台所水栓における太陽熱補正給湯熱負荷 (MJ/h) L_dashdash_w_d_t(ndarray): 1時間当たりの洗面水栓における太陽熱補正給湯熱負荷 (MJ/h) L_dashdash_s_d_t(ndarray): 1時間当たりの浴室シャワー水栓における太陽熱補正給湯熱負荷 (MJ/h) L_dashdash_b1_d_t(ndarray): 1時間当たりの浴槽水栓湯はり時における太陽熱補正給湯熱負荷 (MJ/h) L_dashdash_b2_d_t(ndarray): 1時間当たりの浴槽自動追焚時における太陽熱補正給湯熱負荷 (MJ/h) L_dashdash_ba1_d_t(ndarray): 1時間当たりの浴槽水栓さし湯における太陽熱補正給湯熱負荷 (MJ/h) Returns: ndarray: 1時間当たりの発電ユニットによる浴槽追焚を除く給湯熱負荷 (MJ/h) """ L_DHW_d_t = L_dashdash_k_d_t + L_dashdash_w_d_t + L_dashdash_s_d_t + L_dashdash_b1_d_t + L_dashdash_b2_d_t + L_dashdash_ba1_d_t return L_DHW_d_t
1e4354a3bed5554b65257847900752c1a0389269
157,187
def mean(seq): """Arithmetic mean.""" return sum(seq) / len(seq)
f5a4f7f2a39ab4e5fc57a03b5d2a0a588e93bc32
211,436
def k8s_url(namespace, kind, name=None): """ Construct URL referring to a set of kubernetes resources Only supports the subset of URLs that we need to generate for use in kubespawner. This currently covers: - All resources of a specific kind in a namespace - A resource with a specific name of a specific kind """ url_parts = [ 'api', 'v1', 'namespaces', namespace, kind ] if name is not None: url_parts.append(name) return '/' + '/'.join(url_parts)
8d54770990fb500da1a42df891e21d1dce18bef9
684,334
def as_twos_comp(value: int) -> int: """Interpret number as 32-bit twos comp value.""" if value & 0x8000_0000 != 0: # negative flipped_value = (~value) & 0xFFFF_FFFF return -(flipped_value + 1) else: # positive return value
013357f70dd51977d745e3d42ea33efc838c8515
439,967
def _has_exclude_patterns(name, exclude_patterns): """Checks if a string contains substrings that match patterns to exclude.""" for p in exclude_patterns: if p in name: return True return False
72c0401e1e7073a2ca42e1f99b98e4a1ab834bd3
690,023
def get_volumetric_scene(self, data_key="total", isolvl=0.5, step_size=3, **kwargs): """Get the Scene object which contains a structure and a isosurface components Args: data_key (str, optional): Use the volumetric data from self.data[data_key]. Defaults to 'total'. isolvl (float, optional): The cuoff for the isosurface to using the same units as VESTA so e/bhor and kept grid size independent step_size (int, optional): step_size parameter for marching_cubes_lewiner. Defaults to 3. **kwargs: kwargs for the Structure.get_scene function Returns: [type]: [description] """ struct_scene = self.structure.get_scene(**kwargs) iso_scene = self.get_isosurface_scene( data_key=data_key, isolvl=isolvl, step_size=step_size, origin=struct_scene.origin, ) struct_scene.contents.append(iso_scene) return struct_scene
836fb5f3158ed5fe55a2975ce05eb21636584a95
705,838
import glob import csv def write_colocated_data_time_avg(coloc_data, fname): """ Writes the time averaged data of gates colocated with two radars Parameters ---------- coloc_data : dict dictionary containing the colocated data parameters fname : str file name where to store the data Returns ------- fname : str the name of the file where data has written """ filelist = glob.glob(fname) if not filelist: with open(fname, 'w', newline='') as csvfile: csvfile.write('# Colocated radar gates data file\n') csvfile.write('# Comment lines are preceded by "#"\n') csvfile.write('#\n') fieldnames = [ 'rad1_time', 'rad1_ray_ind', 'rad1_rng_ind', 'rad1_ele', 'rad1_azi', 'rad1_rng', 'rad1_dBZavg', 'rad1_PhiDPavg', 'rad1_Flagavg', 'rad2_time', 'rad2_ray_ind', 'rad2_rng_ind', 'rad2_ele', 'rad2_azi', 'rad2_rng', 'rad2_dBZavg', 'rad2_PhiDPavg', 'rad2_Flagavg'] writer = csv.DictWriter(csvfile, fieldnames) writer.writeheader() for i, rad1_time in enumerate(coloc_data['rad1_time']): writer.writerow({ 'rad1_time': rad1_time.strftime('%Y%m%d%H%M%S'), 'rad1_ray_ind': coloc_data['rad1_ray_ind'][i], 'rad1_rng_ind': coloc_data['rad1_rng_ind'][i], 'rad1_ele': coloc_data['rad1_ele'][i], 'rad1_azi': coloc_data['rad1_azi'][i], 'rad1_rng': coloc_data['rad1_rng'][i], 'rad1_dBZavg': coloc_data['rad1_dBZavg'][i], 'rad1_PhiDPavg': coloc_data['rad1_PhiDPavg'][i], 'rad1_Flagavg': coloc_data['rad1_Flagavg'][i], 'rad2_time': ( coloc_data['rad2_time'][i].strftime('%Y%m%d%H%M%S')), 'rad2_ray_ind': coloc_data['rad2_ray_ind'][i], 'rad2_rng_ind': coloc_data['rad2_rng_ind'][i], 'rad2_ele': coloc_data['rad2_ele'][i], 'rad2_azi': coloc_data['rad2_azi'][i], 'rad2_rng': coloc_data['rad2_rng'][i], 'rad2_dBZavg': coloc_data['rad2_dBZavg'][i], 'rad2_PhiDPavg': coloc_data['rad2_PhiDPavg'][i], 'rad2_Flagavg': coloc_data['rad2_Flagavg'][i]}) csvfile.close() else: with open(fname, 'a', newline='') as csvfile: fieldnames = [ 'rad1_time', 'rad1_ray_ind', 'rad1_rng_ind', 'rad1_ele', 'rad1_azi', 'rad1_rng', 'rad1_dBZavg', 'rad1_PhiDPavg', 'rad1_Flagavg', 'rad2_time', 'rad2_ray_ind', 'rad2_rng_ind', 'rad2_ele', 'rad2_azi', 'rad2_rng', 'rad2_dBZavg', 'rad2_PhiDPavg', 'rad2_Flagavg'] writer = csv.DictWriter(csvfile, fieldnames) for i, rad1_time in enumerate(coloc_data['rad1_time']): writer.writerow({ 'rad1_time': rad1_time.strftime('%Y%m%d%H%M%S'), 'rad1_ray_ind': coloc_data['rad1_ray_ind'][i], 'rad1_rng_ind': coloc_data['rad1_rng_ind'][i], 'rad1_ele': coloc_data['rad1_ele'][i], 'rad1_azi': coloc_data['rad1_azi'][i], 'rad1_rng': coloc_data['rad1_rng'][i], 'rad1_dBZavg': coloc_data['rad1_dBZavg'][i], 'rad1_PhiDPavg': coloc_data['rad1_PhiDPavg'][i], 'rad1_Flagavg': coloc_data['rad1_Flagavg'][i], 'rad2_time': ( coloc_data['rad2_time'][i].strftime('%Y%m%d%H%M%S')), 'rad2_ray_ind': coloc_data['rad2_ray_ind'][i], 'rad2_rng_ind': coloc_data['rad2_rng_ind'][i], 'rad2_ele': coloc_data['rad2_ele'][i], 'rad2_azi': coloc_data['rad2_azi'][i], 'rad2_rng': coloc_data['rad2_rng'][i], 'rad2_dBZavg': coloc_data['rad2_dBZavg'][i], 'rad2_PhiDPavg': coloc_data['rad2_PhiDPavg'][i], 'rad2_Flagavg': coloc_data['rad2_Flagavg'][i]}) csvfile.close() return fname
2e786c6df8a617f187a7b50467111785342310c5
708,019
def encode_file(body, filename): """ Encode a file in a binary form and return a mime content type and encoded binary data :param body: binary data to encode :param filename: name of file with data to encode :return: content_type, body """ boundary = '--------------MIME_Content_Boundary---------------' lines = [] lines.append('--' + boundary) lines.append('Content-Disposition: form-data; name="input_file"; ' 'filename="{0}"'.format(filename)) lines.append('Content-Type: application/octet-stream') lines.append('') lines.append(body) lines.append('--' + boundary + '--') lines.append('') encoded = "\r\n".join(lines) content_type = 'multipart/form-data; boundary=%s' % boundary return content_type, encoded
f19b6bc99c4d541eb5b9ec8228ea815d36e07ee4
500,770
def _format_config(file_value, effective_value, name=None, envvar_name=None): """ Construct a string to show on a terminal, indicating the value and possibly other useful things such as the setting name and whether it is being controlled by an environment variable. >>> _format_config('x', 'x') 'x' >>> _format_config('x', 'x', 'setting.name') -> 'setting.name x' >>> _format_config('x', 'y', envvar_name='ENVVAR') 'y # overwritten by ENVVAR; config file value: x' >>> _format_config('x', 'y', 'setting.name', envvar_name='ENVVAR') 'setting.name y # overwritten by ENVVAR; config file value: x' :param file_value: config value present in the toml file :type file_value: str :param effective_value: config value either from file or as overwritten from the environment :type effective_value: str :param name: config key (not used for single value show) :type name: str|None :param envvar_name: name of environment variable that overwote the value :type envvar_name: str|None :returns: formatted string for terminal :rtype: str """ # when declaring that vars are overwritten by the environment, # line up those messages to this column (unless the var name is long) overwite_msg_display_column = 35 # When showing all values, don't print the token value; if name == "core.dcos_acs_token": print_value = "*"*8 else: print_value = effective_value if file_value == effective_value: if name: return '%s %s' % (name, print_value) else: return effective_value else: if not envvar_name: envvar_name = "N/A" # this should never happen if name: s = '%s %s' % (name, print_value) else: s = effective_value left_pad_fmt = '%-{}s'.format(overwite_msg_display_column) # '%-35s' msg_start = left_pad_fmt + ' # overwritten by environment var %s; ' if print_value != effective_value: # We're obscuring the effective security token # so don't report the file value either msg = msg_start + "config file value differs" return msg % (s, envvar_name) msg = msg_start + 'config file value: %s' return msg % (s, envvar_name, file_value)
1f76594ca31ddf522973580d09b74b7f093e6409
221,363
def split_ver(v): """Covert the string '1.2.3' into the list [1,2,3] """ return [int(x) for x in v.split('.')]
df9b1d4cc6c63cbf82cc0a06374f6a9e73702308
606,119
def polynomial_redshift(d): """ Polynomial approximation of calculating redshift corresponding to a given distance. Parameters ---------- d: float A luminosity distance, in Mpc. Returns ------- z: float The redshift corresponding to the input distance. """ #input type checking assert type(d) == float, 'd should be a float.' #sanity check: distance should not be negative assert d >= 0, 'The distance should be a positive number.' #polynomial approximation of redshift conversion z = 1.0832e-12*d**3 - 1.7022e-8*d**2 + 0.00021614*d return z
87b313351551da98371d23de8b0122b83ecb1a72
255,195
import json def parse_file(filepath: str): """[loads a json file and returns a python object] Args: filepath (str): [path to json file] Returns: [type]: [a python object] """ f = open(filepath) data = json.load(f) f.close() return data
c56f3a8870a3583fd895b01dc3ca142263600dcb
58,877
def is_alive(thread): """Helper to determine if a thread is alive (handles none safely).""" if not thread: return False return thread.is_alive()
9665f09b0c661d7ef0b65704ab8f501fff081cdd
69,498
import base64 def b64e(s): """b64e(s) -> str Base64 encodes a string Example: >>> b64e("test") 'dGVzdA==' """ return base64.b64encode(s)
2562f5d18ac59bbe4e8a28ee4033eaa0f10fc641
701,446
from typing import Any from typing import Tuple def exec_command(node, **kwargs: Any) -> Tuple: """ Return the results of the command executed. Args: node: The node to be used for executing the given command. kwargs: The supported keys are sudo - Default false, root privilege to be used or not cmd - The command to be executed check_ec - Evaluate the error code returned. Return: out, err String values Raises: CommandFailed when there is an execution failure """ out, err = node.exec_command(**kwargs) return out, err
e9ef5bbc4691143adbe0a41e6065231edfb54156
212,637
import torch def all_params(model: torch.nn.Module) -> torch.Tensor: """ Returns an array of all model parameters, given either from a Module or a state_dict """ return torch.cat([x.detach().view(-1) for n, x in model.state_dict().items() if n != "word_embeddings.position_ids"])
70c0a87784eb4e54d480c5b230ad44d32d0f1e10
551,612
def get_items(request, client): """ Get items using the request with the given parameters """ # query results result = client.quick_search(request) # get result pages items_pages = [page.get() for page in result.iter(None)] # get each single item return [item for page in items_pages for item in page['features']]
f8b15e7d3f63cb4f1e42bfb15850f07d35fc6fe0
656,320
def compress(word): """ This function takes a string as an argument and returns a new string such that each character is followed by its count, and any adjacent duplicate characters are removed. """ result = "" if len(word) == 0: return result else: count = 1 for i in range(1, len(word)): if word[i] is word[i-1]: count += 1 else: result = result + word[i-1] + str(count) count = 1 return result + word[len(word)-1] + str(count)
89d0686746a490a2b0e511862312de84f4e7d857
330,657
import math def water_saturation_vapour_pressure_iapws(t): """Returns the water vapour pressure according to W. Wagner and A. Pruss (1992) J. Phys. Chem. Reference Data, 22, 783–787. See http://www.kayelaby.npl.co.uk/chemistry/3_4/3_4_2.html Valid only above the triple point. The IAWPS formulation 1995 (Wagner and Pruß, 2002) is valid in the temperature range 273.16 K < T < 647.096 K. See http://cires1.colorado.edu/~voemel/vp.html :param t: water temperature (°C) :return: water vapour pressure in Pascal (Pa) """ tc = 647.096 # K pc = 22064000 # Pa a1 = -7.85951783 a2 = 1.84408259 a3 = -11.7866497 a4 = 22.6807411 a5 = -15.9618719 a6 = 1.80122502 t += 273.15 tau = 1 - t/tc return pc * math.exp((a1 * tau + a2 * tau**1.5 + a3 * tau**3 + a4 * tau**3.5 + a5 * tau**4 + a6 * tau**7.5) * tc / t)
aa424bc63b3165bc439dacbf8748f478654a15b2
696,592
def _capitalize(word: str) -> str: """Capitalizes the given word. :param word: the word to capitalize :return: the word with the first letter capitalized (any other uppercase characters are preserved) """ if word == "": return word return word[0].upper() + word[1:]
8f16e0c1508525be3d5ce360e96b1b042ef12b29
584,972
def format_trec_results(qid: str, doc: str, rank: int, score: float, run_id='RunId'): """ Produce a TREC formatted str of results. :param qid: Query Id :param doc: Document :param rank: Rank position :param score: Ranking score :param run_id: Name for this run :return String in TREC format """ return '{}\t0\t{}\t{}\t{:.4f}\t{}'.format(qid, doc, rank, float(score), run_id)
dc5095ab2a5d98c1d5096ebbd85e08e792bff477
56,572
import requests def GetStockPriceJson(symbol, size, stock_key): """ Summary: Gets JSON response with stock data from AlphaVantage API Inputs: symbol - string representing stock's ticker symbol size - string denoting size of response, "compact" means 100 days' data will be returned, "full" means the full range stock_key - string representing AlphaVantage API Key Return Value: JSON object storing AlphaVantage API response """ url = 'https://www.alphavantage.co/query?function=TIME_SERIES_DAILY_ADJUSTED&symbol={}&outputsize={}&apikey={}'.format(symbol, size, stock_key) response = requests.get(url) response_json = response.json() return response_json
01218eace05ad1cd1f83dafc15f36a510aae825a
239,368
def read_file(path): """Read entire file content as string.""" with open(path) as file: return file.read()
a81082fa9e010c10e6490f672d28e1009c568f5c
567,765
def add_relationship_to_entities(rel_map): """ Purpose: define entity relationship Args: rel_map: the relationship map Returns: graql_insert_query - graql query """ graql_insert_query = ( "define " + rel_map["rel1"]["entity"] + " plays " + rel_map["rel1"]["role"] + "; " ) graql_insert_query += ( rel_map["rel2"]["entity"] + " plays " + rel_map["rel2"]["role"] + ";" ) return graql_insert_query
28c65d98b086ab9abd94f75a884feafa32d991cd
532,167
def import_from(module: str, name: str): """ Import a module with the given name (Equivalent of `from module import name`) Args: module (str): The namespace of the module name (str): The name to be imported Returns: The imported class, function, and etc """ module = __import__(module, fromlist=[name]) return getattr(module, name)
a2632f58c0606b8fbc3500a70c6ed79c46c1a2c3
173,309
import math def _(element: float): """ Handles Fortran NINT style rounding of a floating point value. Whether the number is positive or negative, the integer portion of the number is increased (without regard to sign) if the decimal portion of the number is >= 0.5 """ return ( math.floor(element) if (element >= 0) ^ (math.modf(abs(element))[0] >= 0.5) else math.ceil(element) )
c14bc73881c1ee5729080c1e2b03e6203627ac1a
408,770
def caps_from_underscores(string): """Converts words_with_underscores to CapWords.""" words = string.split('_') return ''.join([w.title() for w in words])
66e56350026d14d23d3dfd9e28d46d8e12d06320
539,758
from typing import Callable def pushcall(call: Callable, from_other_thread: bool = False) -> None: """pushcall(call: Callable, from_other_thread: bool = False) -> None Pushes a call onto the event loop to be run during the next cycle. Category: General Utility Functions This can be handy for calls that are disallowed from within other callbacks, etc. This call expects to be used in the game thread, and will automatically save and restore the ba.Context to behave seamlessly. If you want to push a call from outside of the game thread, however, you can pass 'from_other_thread' as True. In this case the call will always run in the UI context on the game thread. """ return None
b56b8d63bd265010e5daf94ee46e59bd194c13bf
70,961
import json def RenderValue(value): """Convert a Python value to a string with its JavaScript representation.""" return json.dumps(value, sort_keys=True)
9e8f33f5d38a5c5e4c89e69fdbf270da39e538e2
568,027
def parse_keywords(strings=[]): """Parse keywords specifications from the given list of strings. >>> kw = sorted(parse_keywords(['_', 'dgettext:2', 'dngettext:2,3', 'pgettext:1c,2']).items()) >>> for keyword, indices in kw: ... print((keyword, indices)) ('_', None) ('dgettext', (2,)) ('dngettext', (2, 3)) ('pgettext', ((1, 'c'), 2)) """ keywords = {} for string in strings: if ':' in string: funcname, indices = string.split(':') else: funcname, indices = string, None if funcname not in keywords: if indices: inds = [] for x in indices.split(','): if x[-1] == 'c': inds.append((int(x[:-1]), 'c')) else: inds.append(int(x)) indices = tuple(inds) keywords[funcname] = indices return keywords
59a47787000758e96a016e506dbabda2fa13756c
550,114
def lookup_values_count(lookup_table): """ Return the number of value columns in a lookup table. """ # NOTE: ignore the first column, which contains the lookup time. return lookup_table.dtype['value'].shape[0]
d5015c264094ef5a92a8ecca5147f7eb72981518
163,688
import time def get_rfc3339_time(secs=None): """Return <secs> in RFC 3339 date/time format (pass secs=None for current date). RFC 3339 is a subset of ISO 8601, used for '{DAV:}creationdate'. See http://tools.ietf.org/html/rfc3339 """ return time.strftime("%Y-%m-%dT%H:%M:%SZ", time.gmtime(secs))
f0f2ea482ea01fbcd635b61406c584c0f7aad0cc
397,882
def get_requires(filename): """ Function used to read the required dependencies (e.g. in 'requirements.txt') """ requires = [] with open(filename, "rt") as req_file: for line in req_file: requires.append(line.rstrip()) return requires
4c4df470846a2812e79fe5349371c287b3a5ea95
101,363
from typing import Counter def sum_all_dates(counters): """Sum up all the counters for each court across all dates. :param counters: A dict of name-counter pairs. :return: A counter object with counts for every court across all dates. """ by_court = Counter() for court, counter in counters.items(): by_court.update({court: sum(v for v in counter.values())}) return by_court
ac3b5c2e1352507533fc0ddead3206a007ed7309
116,639
def filter_stories(stories, triggerlist): """ Takes in a list of NewsStory instances. Returns: a list of only the stories for which a trigger in triggerlist fires. """ lists = [] for i in stories: for triggers in triggerlist: if triggers.evaluate(i)==True: lists.append(i) # This is a placeholder return lists
a91aa78452fb0a75753a0687a7938a565b2b87f0
28,829
import math def number_of_divisors(input_number): """Returns the number of divisors of input_number""" res = 0 # check for square root divisor if math.sqrt(input_number) % 1 == 0: res += 1 # check for other integer divisors for num in range(1, int(math.ceil(math.sqrt(input_number)))): if input_number % num == 0: res += 2 return res
44886479c4b9ea48ee3e5471b3341076e5e42ad5
430,493
def node_cmp(n1, n2): """ Sort nodes by cost """ if n1.cost < n2.cost: return -1 elif n1.cost > n2.cost: return 1 # Returning 0 allows for stable sorting, i.e. equal objects stay in # the same order, which should provide a bit of a performance boost, # as well as a bit of consistency return 0
fa4086eb819acb20b7da13a9ea479067748fc79f
148,350
def cleanly_separate_key_values(line): """Find the delimiter that separates key from value. Splitting with .split() often yields inaccurate results as some values have the same delimiter value ':', splitting the string too inaccurately. """ index = line.find(':') key = line[:index] value = line[index + 1:] return key, value
d790f6bca2b52ee87bce01467a561901ba08655d
41,527
from datetime import datetime def int_to_date(d): """ Converts an integer representation of a date to a date object or None. """ if d == 0: return None return datetime.strptime(str(d), '%Y%m%d').date()
421244c7fff05fbd9b2b96785abafd20672e7fab
562,693
import string def parse_letternumber(st): """ Parse CDMS's two-letter QNs From the CDMS docs: "Exactly two characters are available for each quantum number. Therefore, half integer quanta are rounded up ! In addition, capital letters are used to indicate quantum numbers larger than 99. E. g. A0 is 100, Z9 is 359. Small types are used to signal corresponding negative quantum numbers." """ asc = string.ascii_lowercase ASC = string.ascii_uppercase newst = ''.join(['-' + str(asc.index(x)+10) if x in asc else str(ASC.index(x)+10) if x in ASC else x for x in st]) return int(newst)
2473fb314e5f16b4da81c1ce7535f0c23667ace3
97,231
def _unsigned_zero(dtype): """ Given a numpy dtype, finds its "zero" point, which is exactly in the middle of its range. """ assert dtype.kind == 'u' return 1 << (dtype.itemsize * 8 - 1)
6fcbc9ec4c563beb9a7fbf50a29fd5960912498f
124,449
def MinPositiveValue(data): """ This function determines the minimum positive value of a provided data list Input: - *data* Output: - *minimum positive value* """ return min([elem for elem in data if elem > 0])
845aa2ac786d987f470f829e36737e43334dddc0
128,705
def freq_in_kmskpc(vo,ro): """ NAME: freq_in_kmskpc PURPOSE: convert a frequency to km/s/kpc INPUT: vo - velocity unit in km/s ro - length unit in kpc OUTPUT: conversion from units where vo=1. at ro=1. HISTORY: 2013-09-01 - Written - Bovy (IAS) """ return vo/ro
64f772917dfd78e1029e07d7987f9999bd171e39
602,964
import io import json def read_json_object(json_filename, encoding="utf-8"): """Reads and returns a single JSON object from the specified text file, raising an error if the file cannot be parsed or if it does not contain exactly one JSON object as a dictionary.""" # Strip comments while keeping line and column numbers. stripped_str = "" with io.open(json_filename, "r", encoding=encoding) as f_in: for line in f_in: line = line.rstrip() comment_pos = line.find("//") if comment_pos > -1: line = line[:comment_pos] stripped_str += line + "\n" obj = json.loads(stripped_str) if not isinstance(obj, dict): raise ValueError("File %s contains an invalid JSON object." % json_filename) return obj
b92f132c559218a0deac024d9870fc4fd4f43d5e
199,017
def rivers_with_station(stations): """Returns a list of the names of rivers with a monitoring station""" # Creates a set of rivers with monitoring stations rivers = set() for station in stations: if station.river is not None: rivers.add(station.river) # Converts set into alphabetically ordered list sorted_rivers = sorted(rivers) return sorted_rivers
c1a8f6d2fe140101600325297ba3e28239ef2bce
258,395
import json def load_json_data(response): """Decode json from response""" return json.loads(response.data.decode('utf8'))
e49184794886c45a150c6e72a0cebd2cb0fc97b5
505,979
def trim(d, prepended_msg): """remove the prepended-msg from the keys of dictionary d.""" keys = [x.split(prepended_msg)[1] for x in d.keys()] return {k:v for k,v in zip(keys, d.values())}
a7bf495750713a51c74dfd95dbbabcbab76f1910
34,587
def diplay_img_info(img, divisor, use_RGB): """ This function displays the information of the image dimensions as a print""" nr_z_slices = img.shape[1] nr_timepoints = img.shape[0] x_dim = img.shape[-2] y_dim = img.shape[-2] x_div = x_dim//divisor y_div = y_dim//divisor print(img.shape) print("The Resolution is: " + str(x_dim)) print("The number of z-slizes is: " + str(nr_z_slices)) print("The number of timepoints: " + str(nr_timepoints)) if use_RGB: nr_channels = img.shape[-1] print("The number of channels: " + str(nr_channels)) nr_channels = 1 else: nr_channels = 1 return nr_z_slices, nr_channels, nr_timepoints, x_dim, y_dim, x_div, y_div
19119f7bcfcaa6e17ef3fedba76793dd05ac3f77
590,626
def RIGHT(string, num_chars=1): """ Returns a substring of length num_chars from the end of a specified string. If num_chars is omitted, it is assumed to be 1. Same as `string[-num_chars:]`. >>> RIGHT("Sale Price", 5) 'Price' >>> RIGHT('Stock Number') 'r' >>> RIGHT('Text', 100) 'Text' >>> RIGHT('Text', -1) Traceback (most recent call last): ... ValueError: num_chars invalid """ if num_chars < 0: raise ValueError("num_chars invalid") return string[-num_chars:]
d45021b3d9f89d2cc5ad8533d194a8c6ead87d17
680,490
def build_texts_from_movies(path_to_movie_dat): """ Extracts genre text from movies.dat to create semantic embeddings :param path_to_movie_dat: :return: dict of text list keyed by movie_id """ texts = {} with open(path_to_movie_dat, "r", encoding="ISO-8859-1") as f: for line in f: movie_id, title_and_year, genres = line.strip("\n").split("::") title = title_and_year[:-7] # year = title_and_year[-5:-1] sorted_genres = sorted(genres.split("|")) texts[movie_id] = [title] + sorted_genres return texts
e98a8e5eedee7a983431246f0e4968d6f4daaa40
20,002
def perm(n, k): """Return P(n, k), the number of permutations of length k drawn from n choices. """ result = 1 assert k > 0 while k: result *= n n -= 1 k -= 1 return result
08dea796e3358ae490813baf7331ae10b30b0baf
139,957
import re def find_email(text): """ Extract email from text. Parameters ---------- text: str Text selected to apply transformation Examples: --------- ```python sentence="My gmail is abc99@gmail.com" find_email(sentence) >>> 'abc99@gmail.com' ``` """ line = re.findall(r'[\w\.-]+@[\w\.-]+', str(text)) return ",".join(line)
c1ebb0d851576aebc277fa48f7e3d2569a695d31
56,236
def get_iface_speed(iface): """ Converts iface speed from bps to DNS-friendly string """ speed = iface["iface_speed"] if speed: speed = int(iface["iface_speed"]) else: return None if speed < 1536000: return None elif speed == 1536000 or speed == 1544000: return "t1" else: prefix = speed suffixes = ["k", "m", "g", "t", "p"] i = 0 while prefix > 100: prefix = prefix / 1000 i += 1 return "{}{}".format(int(prefix), suffixes[i - 1])
16149a97b76b7f7a61433c665d5ca222c95ec01d
608,506
import re def is_valid_id(id): """checks if an id is valid Args: id (str): The id of a note Returns: bool: True if the id is valid """ if re.match(r'^[0-9a-f]{9}$', id): return True else: return False
449868ff3198b39d69721a336a451ed64d9d1c20
578,069
import random def _sample(iterable, sample_count): """ Choose a random sampling of items from an iterator. (you will get Nones if sample_count is less than iterable length) """ rand = random.SystemRandom() result = [None] * sample_count for i, item in enumerate(iterable): if i < sample_count: result[i] = item else: j = int(rand.random() * (i + 1)) if j < sample_count: result[j] = item return result
8897c7acd7ddd6bce41c563861be95922fdcac7e
384,209
def nearest_index(index_array, value): """Find the position in an increasing array nearest a given value.""" # find the index of the last data point that is smaller than the 'value' # we are looking for .... ind1 = len(index_array.compress(index_array < value)) # if we are at the very end of the array then this is our best estimate ... if ind1 == len(index_array)-1: ind = ind1 # otherwise, which of the two points is closer? else: val1 = index_array[ind1] val2 = index_array[ind1+1] if val2-value > value-val1: ind = ind1 else: ind = ind1+1 return ind
185c5b898a49663b97f6dc690c053b8acf342d9a
351,775
def build_template(cfg: dict) -> dict: """ Build string's template dictionary :rtype: dict :param cfg: representation of the config :return: dictionary to be used with Template().substutute() function """ task = cfg['main'] def concat(*dictionaries: dict) -> dict: res = dict() for d in dictionaries: res = {**res, **d} return res template = concat(task['miner'], task['pool'], cfg['rig']) return template
48d62dc71d7d0a7bc7cb186696afc4a5800cb83c
485,290
import torch def extract_kpt_vectors(tensor, kpts, rand_batch=False): """ Pick channel vectors from 2D location in tensor. E.g. tensor[b, :, y1, x1] :param tensor: Tensor to extract from [b, c, h, w] :param kpts: Tensor with 'n' keypoints (x, y) as [b, n, 2] :param rand_batch: Randomize tensor in batch the vector is extracted from :return: Tensor entries as [b, n, c] """ batch_size, num_kpts = kpts.shape[:-1] # [b, n] # Reshape as a single batch -> [b*n, 2] tmp_idx = kpts.contiguous().view(-1, 2).long() # Flatten batch number indexes -> [b*n] e.g. [0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2] b_num = torch.arange(batch_size) b_num = b_num.repeat((num_kpts, 1)).view(-1) b_num = torch.sort(b_num)[0] if not rand_batch else b_num[torch.randperm(len(b_num))] # Perform indexing and reshape to [b, n, c] return tensor[b_num, :, tmp_idx[:, 1], tmp_idx[:, 0]].reshape([batch_size, num_kpts, -1])
fa80de574fe369b770807d8a273e295ca395a9c5
217,000
def extract_episode_details(season, episode_response): """Clean and extract episode details response. Take an episode details response and cleans the data. Extract the relevant fields needed to construct an Episode object. Args: season: The season number episode_response: An episode_details response Returns: episode_details: Dictionary with relevant episode information """ try: rating = float(episode_response['imdbRating']) except ValueError: # Rating may come through as 'N/A' if episode has not aired rating = None return { 'title': episode_response['Title'], 'episode': int(episode_response['Episode']), 'season': season, 'ratings': {'imdb': rating}, }
dc236736d69a1521961adf09ad871a4b1c0a49d4
593,288
def find_anychar(string, chars, index=None, negate=0): """find_anychar(string, chars[, index]) -> index of a character or -1 Find a character in string. chars is a list of characters to look for. Return the index of the first occurrence of any of the characters, or -1 if not found. index is the index where the search should start. By default, I search from the beginning of the string. """ if index is None: index = 0 while index < len(string) and \ ((not negate and string[index] not in chars) or (negate and string[index] in chars)): index += 1 if index == len(string): return -1 return index
3ea0ad8f0d8eb45d1dc9834f577404b9e7a06492
142,753
def datetime_to_estudent(date): """Take a datetime object and return a compatible string. (2017, 5, 4) -> 04-May-2017 """ string = date.strftime('%d-%b-%Y') return string
0e2e271e937a32b8690dfe486c6161886c557e3e
119,697
def get_columns(api, config): """ Get the trello column ids for a trello board given a api handle and the id of the board. :param api: A trollo Boards api handle. :param dict config: The configuration data (see note below for details). :return: A tuple of column trello ids .. note:: Required configuration keys and values * board_id The trello board unique id * new_column The name(str) of the column where new cards are added This would be the same name as seen in the Trello webui * close_column The name(str) of the column where closed/inactive are moved. This would be the same name as seen in the Trello webui """ for key in ['board_id', 'new_column', 'close_column']: if key not in config: raise KeyError(f"A required key '{key}' is missing in the config") column_data = {x['name']: x['id'] for x in api.get_list(config['board_id'])} return (column_data[config['new_column']], column_data[config['close_column']])
524755b8f0c9ea0aa25c07bc5f9b2e16373a682a
244,584
import csv def get_header_csv(csv_file, cols_delimiter): """ Get header of a csv :param csv_file: path to the csv file :param cols_delimiter: delimiter between columns :return: header of csv as a list of strings """ with open(csv_file, "r") as f: reader = csv.reader(f, delimiter=cols_delimiter) header_csv = next(reader) return header_csv
bb8adef2b73b4d84d29469927f0b964fc6b10349
449,943
def estimate_norm(X): """Estimates the mean and standard deviation from a data set Parameters: X : numpy.ndarray A 2D numpy ndarray in which the rows represent examples while the columns, features of the data you want to estimate normalization parameters on Returns: numpy.ndarray, A 1D numpy ndarray containing the estimated mean over dimension 1 (columns) of the input data X numpy.ndarray, A 1D numpy ndarray containing the estimated unbiased standard deviation over dimension 1 (columns) of the input data X """ return X.mean(axis=0), X.std(axis=0, ddof=1)
db9ce74adeed6ef891a1b339c323d98cdac94fe4
175,510
def format_pval(pval, significant_figures=2): """ Helper function to format pvalue into string. """ return '{:g}'.format(float('{:.{p}g}'.format(pval, p=significant_figures)))
ebe7f11265360d1033d6b8eb5a81b86794ebb1ca
492,398
def find_null_net_stations(db, collection="arrival"): """ Return a set container of sta fields for documents with a null net code (key=net). Scans collection defined by collection argument. """ dbcol = db[collection] net_not_defined = set() curs = dbcol.find() for doc in curs: if not 'net' in doc: sta = doc['sta'] net_not_defined.add(sta) return net_not_defined
582dc0a0b14e091e3b54fb3c2040669216ec4bf5
24,460
from pathlib import Path def coffee_layout_dir(testdata: Path) -> Path: """ Returns the layout directory containing: - has-multiple-sizes -- coffee-inspired sizes - has-only-one-size """ return testdata / "layouts"
0e471b5f1e6fdab17f981cae82110f5990d920f4
262,331
def maximum_toys(prices, k): """https://www.hackerrank.com/challenges/mark-and-toys/problem Mark and Jane are very happy after having their first child. Their son loves toys, so Mark wants to buy some. There are a number of different toys lying in front of him, tagged with their prices. Mark has only a certain amount to spend, and he wants to maximize the number of toys he buys with this money. Given a list of prices and an amount to spend, what is the maximum number of toys Mark can buy? Args: prices (list): Array of prices of toys k (int): Mark's budget Returns: int: The total number of toys Mark can purchase """ prices.sort() count = 0 for i in prices: if k - i < 0: break k -= i count += 1 return count
c236fc2dd102c2f63a864a1bd477b2f3d6565ea7
416,304
def harm(x,y): """Harmonic mean of x and y""" return x*y/(x+y)
7054a8a05e6d20fa39efd31ac62a5d5c4c51f061
680,201
from typing import Type from typing import Iterable from typing import Optional import inspect def get_closest_parent(target: Type, classes: Iterable[Type]) -> Optional[Type]: """ Find which class in given list is the closest parent to a target class. :param target: class which we are comparing of :param classes: :return: the closest parent or None if not found """ target_mro = inspect.getmro(target) res = None min_distance = float('inf') for parent in classes: found = [x for x in enumerate(target_mro) if x[1] == parent] if found: distance, klass = found[0] if distance == 0: # Skip if klass is target continue if distance < min_distance: res = klass min_distance = distance return res
5048ed91e3d7790b445b749e23a29d66437b11e6
257,590
def extract(num): """ Given a max 3 character number, extract and return hundredth, tenth and one value Parameters ---------- num: string Number in string Return ---------- hundredth: int Hundredth number tenth: int Tenth number one: int One number """ hundredth = 0 tenth = 0 one = 0 if len(num) == 3: hundredth, tenth, one = int(num[0]), int(num[1]), int(num[2]) if len(num) == 2: tenth, one = int(num[0]), int(num[1]) if len(num) == 1: one = int(num[0]) return hundredth, tenth, one
d03c6068619ed8e901474ad74aaad7a30d2b0353
381,239
def bb_frontprint(bb): """ Returns a rectangle that defines the front face of a bounding box. """ x1,y1,z1 = bb[0] x2,y2,z2 = bb[1] return (x1,z1), (x2,z2)
303e31711fcd647e6f5523902f0c3a60accbdd19
562,318
import re def get_template_keys_from_string(template_string): """ Retrieve all the keys from the template string which are identified by '{{ <key_name> }}'. :param template_string: the template in a string :type template_string: string :return: the list of the template keys corresponding to secret parameters :rtype: list[string] """ keys = re.findall(r"{{([a-z0-9_ ]+)", template_string) trimmed_keys = [key.strip() for key in keys] return trimmed_keys
e63864590d6a4d1dfc7439a306186f409f325c3b
508,388
from typing import List from typing import Tuple def count_stats(errors: List[str]) -> Tuple[int, int]: """Count total number of errors and files in error list.""" errors = [e for e in errors if ': error:' in e] files = {e.split(':')[0] for e in errors} return len(errors), len(files)
93e4cd6fce6d484f1a18d924931ec04c4463ea7f
462,455
import uuid def generate_job_id(group_uuid): """ Generates a job ID """ return "{}.{}".format(group_uuid, uuid.uuid4())
a0aab5e36899930af720e156e0856b43041b5f67
65,302
def factorial_iter(n: int): """Iteartively compute factorial of n.""" result = 1 for i in range(1, n+1): result = result * i return result
31a30f71161a5a840e9db9ef6d1d2459e41e83dc
282,683
def keys_to_ints(d): """ Takes a dict and returns the same dict with all keys converted to ints """ return {int(k): v for k, v in d.items()}
17088f54c5808e42c0d6589cea8829c6819ccc7e
123,750
import copy def expand_list(list_1d: list) -> list: """Expand 1d list to 2d Parameters ---------- list_1d : list input list Returns ------- list_2d: list output 2d list """ list_2d = copy.deepcopy(list_1d) if not isinstance(list_1d[0], list): list_2d = [list_2d] return list_2d
5c594076650dbc2a50be64cbb5cb55ea2f6d184f
72,826
from typing import Union def _prepare_positions(position_start: Union[int, None], position_end: Union[int, None], aln_len: int) -> dict: """ Prepare a dictionary with start and end position for sequence trimming. Arguments: position_start (int, None): leftmost (5') position; 1-based indexing position_end (int, None): rightmost (3') position; 1-based indexing aln_len (int): length of the alignment Returns: (dict): dictionary containing trimming positions using 0-based indexing """ if not position_start and not position_end: raise ValueError("Neither primers nor sequence positions were " "provided - nothing to be trimmed.") if position_start: if position_end and position_start >= position_end: raise ValueError("Start position should be smaller than end " "position while trimming.") elif position_start >= aln_len: raise ValueError("Start position should be smaller than " "alignment length.") else: position_start -= 1 if position_end and position_end > aln_len: position_end = aln_len return {'start': position_start, 'end': position_end}
b299ae7e5d4b57cd9ba8174a39ab7d3057aa850f
464,005
def axprops(dct): """Filters `dct` for properties associated with a plot axes. Example: >>> # Note how kwargs gets split into axes/line properties. >>> def myplotter(ax, x, y, **kwargs) >>> ax.set(**axprops(kwargs)) >>> ax.plot(x, y, kwargs) """ # List of included axis properties props = ["title", "facecolor", "aspect"] # Append xyz-specific props for ax in ["x", "y", "z"]: for p in ["label", "ticks", "scale", "lim"]: props.append(ax+p) # intersection(dct,props) props = {p: dct.pop(p) for p in props if p in dct} return props
8eeaf0814a08a325cdee9f58272c19f4ae12c88e
122,969
def series_is_type(series, type): """Checks whether the given column is of the provided python type Args: series (pd.Series): type: A python type Returns: bool """ idx = series.first_valid_index() if idx == None: return False else: return isinstance(series.loc[idx], type)
7f1d76912d3f5cad85a6057bd2068b8810b19afe
234,487