content
stringlengths 39
9.28k
| sha1
stringlengths 40
40
| id
int64 8
710k
|
---|---|---|
def state_from_scratch(args: tuple, kwargs: dict) -> dict:
"""Create pipeline state from (args, kwargs)."""
state = {i: v for i, v in enumerate(args)}
state.update(kwargs)
return state | 26b84c95fcdeae55e903cdfa763bfc59597caedb | 658,469 |
def count_fish(fish):
"""
Count how many fish are alive.
:param fish: dictionary of fish
:return: number of living fish
"""
counter = 0
for f in fish.values():
counter += f
return counter | 760ec10d2303a18b27d12f27fbeaf785260d60b8 | 164,045 |
def test_size(STDictonary_root, count=0):
"""Test function for the size counter of the STDict-class, STDictonary_root = root of STDict to test , O(n)"""
if STDictonary_root is None:
return count
else:
count += 1
count = test_size(STDictonary_root._left, count)
count = test_size(STDictonary_root._right, count)
return count | bf992f36bc0c337c36cf49e15e16636055b4ce1d | 619,106 |
def norm(x1,x2=None):
"""
Normalizes x1. If also given as input x2, then normalizes x1 to x2.
:param x1: input array
:param x2: optional
:returns: normalized x1
"""
if x2 is None:
return x1/x1.max()
else:
return x1*x2.max()/x1.max() | 26a76b485b81dcc34d67a0b9879deda92d8f4035 | 610,955 |
def or_(a=False, b=False, c=False, d=False, e=False, f=False, g=False, h=False):
"""Checks if any value is True. `๐`_
- a: 1st boolean
- b: 2nd boolean
- ...
Example:
>>> or_(True, False) == True
>>> or_(False, False) == False
>>> or_(False, True, False, True) == True
>>> or_(False, False, False, False) == False
.. _๐:
https://github.com/python3f/extra-boolean/wiki/or
"""
return a or b or c or d or e or f or g or h | 99c3ac23ae06a5ff08ca6e90fd40873e17fd5540 | 477,415 |
def _year_number_to_string(year):
"""Converts year from number to string.
:param year: Integer year.
:return: year_string: String in format "yyyy" (with leading zeros if
necessary).
"""
return '{0:04d}'.format(int(year)) | 8e1fad0e80ddbdc451c4503f479284351c5375e2 | 541,538 |
def _mutl_by_int(expr, val):
""" Create an expression that multiply an expression by an integer
Args:
expr: Expression to constrain
val: Integer value to multiply expression with
Returns:
New expression
"""
if val == 1:
return expr
if val == -1:
return -expr
if val == 0:
return 0
return val * expr | 465261491bd3bcbd3f3a946bd03f42eda51e4223 | 344,518 |
import jinja2
def create_run_hoc(template_path, main_protocol):
"""Returns a string containing run.hoc.
Args:
template_path (str): path to the template to fill in
main_protocol (bool): whether the Main Protocol is used or not
Returns:
str: hoc script to run the simulation
"""
# load template
with open(template_path, "r", encoding="utf-8") as template_file:
template = template_file.read()
template = jinja2.Template(template)
# edit template
return template.render(
main_protocol=main_protocol,
) | d334e1adcd85a3023c32977aa6f380a593a07c85 | 366,014 |
from datetime import datetime
def validate_date_format(date, format):
"""
Return None if a date format does not parse.
Parameters
----------
date : type
Input date string.
format : type
Input accpeted format to try.
Returns
-------
type
Returns date on successful parse or None on parsing failure.
"""
try:
return(datetime.strptime(date, format))
except Exception:
return(None) | 0c37610f9b9f59582ff43a6f6d3c95bcfe46b4ad | 341,060 |
import email
def fetch_emails(connection, search_string = '(UNSEEN)'):
"""Fetch emails on a connection, specified by a search
Usage:
fetch_emails(connection[, search_string])
connection -- an IMAP connection, which should be logged in and
pointed at a particular mailbox
search_string -- an IMAP search string that specifies the
messages to be fetched from the connection.
Defaults to "(UNSEEN)", which fetches unread emails.
Returns a list of email.message objects
"""
matching_emails = connection.search(None,search_string)[1]
matching_emails = matching_emails[0].decode().split()
messages = [connection.fetch(email, '(RFC822)') for email in
matching_emails]
messages = [email.message_from_bytes(msg[1][0][1]) for msg in messages]
return messages | 0ddd96be31d754fc21f4261f86e2854f8ccda000 | 544,118 |
def bit_reversed(x, n):
"""
Bit-reversal operation.
Parameters
----------
x: ndarray<int>, int
a vector of indices
n: int
number of bits per index in ``x``
Returns
----------
ndarray<int>, int
bit-reversed version of x
"""
result = 0
for i in range(n): # for each bit number
if (x & (1 << i)): # if it matches that bit
result |= (1 << (n - 1 - i)) # set the "opposite" bit in result
return result | 5fe23c87becfe78b56d891d9732807522e2b9d57 | 492,312 |
import zlib
def _adler32(fname):
"""Compute the adler32 checksum on a file.
:param fname: File path to the file to checksum
:type fname: str
"""
with open(fname, 'rb') as f:
checksum = 1
while True:
buf = f.read(1024*1024*8)
if not buf:
break
checksum = zlib.adler32(buf, checksum)
return checksum | 7e7b37d39cdd7dbd1795aa25b48460350e121dae | 30,319 |
def intersection_n (l1, * ls) :
"""Compute intersection of `l1` and all elements of `ls`."""
result = set (l1)
for l in ls :
result.intersection_update (l)
return result | f3a081099afc5cb8563883992f8fc04d1462f85f | 272,809 |
def fix_backspace(word):
""" Replace ``\\`` with ``\\\\`` so that it will printed properly in the
documentation.
"""
return word.replace('\\', '\\\\') | b3a98db39b8f85a43e8224288313a10a6eeaab94 | 584,129 |
def make_plucker(fields):
"""
Factory method that will create a filtering function.
The returned function will accept a dict and return only the fields specified
in the fields parameter.
"""
def filter(record):
result = {}
for field in fields:
if field in record:
result[field] = record[field]
return result
return filter | 61192fe5cb94c1a3e56a0442b59979c1e41cba1c | 287,412 |
def is_valid_index(idx, in_list, start_idx=0):
"""
param: idx (str) - a string that is expected to
contain an integer index to validate
param: in_list - a list that the idx indexes
param: start_idx (int) - an expected starting
value for idx (default is 0); gets
subtracted from idx for 0-based indexing
The function checks if the input string contains
only digits and verifies that the provided index
idx is a valid positive index that can retrieve
an element from in_list.
returns:
- True, if idx is a positive numeric index
that can retrieve an element from in_list.
- False if idx is not an integer value, is negative
or exceeds the size of in_list.
"""
# writing a function with the default parameter value
# using Boolean value as a flag for whether printing needs to occur
# working with dictionaries stored inside a list (a nested list)
# indexing and printing dictionary entries (potentially using enumerate())
# formatting the output according to the specifications
if (idx - start_idx) >= 0 and (idx - start_idx) < len(in_list) and idx.isdigit():
return True
else:
return False | c52e93a059d7f0e20a910bb4831cc4779a82f6ac | 584,880 |
def parent(heap, i):
"""
Returns the index of the parent of a given node.
"""
if i == 0:
return 0
return heap.array[(i-1)//2] | df1e7fa83a6376e394f53bdc465d77d3dd3c6b2f | 54,635 |
import requests
def get_launches() -> list:
"""
Return the list of all past launches.
:return:
"""
url = 'https://api.spacexdata.com/v2/launches/'
response = requests.get(url)
# status code 200 means everything is ok
# see https://httpstatuses.com/200
if response.status_code == 200:
# JSON is a special format that most APIs use
return response.json()
else:
# print an error message and exit the programme
print("SpaceX API is unavailable")
exit() | 134a377a7278966a2fe4c4e253fef1995ddf2e21 | 382,776 |
def parser_shortname(parser_argument):
"""Return short name of the parser with dashes and no -- prefix"""
return parser_argument[2:] | 9827697680cab831f0c0a435e743955a3ede1859 | 657,091 |
import math
def euclidean_distance(data1, data2):
"""
Calculates the euclidean distance between two data objects representing
coordinates.
The data objects must be same-sized sequences of numbers (or act like it).
See http://en.wikipedia.org/wiki/Euclidean_distance
"""
distance = 0
for v1, v2 in zip(data1, data2):
diff = v1 - v2
distance += diff * diff
distance = math.sqrt(distance)
return distance | 1dff552716b354a63615159c66bd13aac45d409d | 202,814 |
def check_if_given_importance(test_post, user):
"""Checks whether a user has given importance to a post or not."""
return any(post.id == test_post.id for post in user.given_importance_to) | bdafd76351e4095b14030855005f8d260e4b348c | 484,421 |
def GetInstance(compute, instance, zone, project):
"""Get the data for a Google Compute Engine instance."""
cmd = compute.instances().get(instance=instance, project=project, zone=zone)
return cmd.execute() | 1cc4815f0bf6ddf64cbe90bc7464d6afb92d1d41 | 503,245 |
def normalise_number(a):
""" Split the power part of a number and its float value normalised to 1
Example
-------
>>> normalise_number(1.433364345e9)
(0.1433364345, 10)
>>> normalise_number(14e-6)
(0.13999999999999999, -4)
>>> normalise_number(-14e-6)
(-0.13999999999999999, -4)"""
i = 0 # power value
v = a # normalised value
if v == 0.:
v = 0.
i = 0.
elif abs(v) < 1:
while abs(v) < 0.1:
v *= 10.
i -= 1
elif abs(v) > 1:
while abs(v) > 1:
v /= 10.
i += 1
return v, i | b34373f56ebb110f6a86572cbfc968a8b3094d7d | 47,854 |
import sqlite3
def connect(db_file):
"""
Connect to an existing sqlite database file.
:param db_file: string - path to database file
:return: connection object or None
"""
try:
conn = sqlite3.connect(db_file)
c = conn.cursor()
return conn, c
except sqlite3.Error as err:
print(err) | 861debe016f000df919df08b7e529dce62e235f0 | 346,259 |
def get_grants(df):
"""Get list of grant numbers from dataframe.
Assumptions:
Dataframe has column called 'grantNumber'
Returns:
set: valid grant numbers, e.g. non-empty strings
"""
print(f"Querying for grant numbers...", end="")
grants = set(df.grantNumber.dropna())
print(f"{len(grants)} found\n")
return list(sorted(grants)) | 0e3c5ab5444e07360310d2f9baf2de2dc60a8dcd | 686,153 |
def sort_by_timestamp(messages):
"""
Sort a group of messages by their timestamp.
"""
return sorted(messages, key=lambda x: x["timestamp"]) | ff90c07c9db35d76d7da49debdc438dcb5158846 | 188,256 |
import re
def get_version(release_id):
"""Get version from release id.
:param release_id: str, release id, example: f33
:return: str, version ("f33" -> "33")
"""
m = re.match(r"^f(\d+)$", release_id)
if not m:
raise ValueError('Invalid release id: %s', release_id)
return m.group(1) | 6517f8a4f7d9593b2dee8a17cea4dd614154df06 | 562,294 |
def getClusterInstance(clusterName, serviceInstance):
"""
Get the cluster MO given the cluster name
"""
content = serviceInstance.RetrieveContent()
searchIndex = content.searchIndex
datacenters = content.rootFolder.childEntity
for datacenter in datacenters:
cluster = searchIndex.FindChild(datacenter.hostFolder, clusterName)
if cluster is not None:
return cluster
return None | 954957befab6c4f28cc968341d8ea00baced5757 | 403,209 |
import json
def json_to_dict(text):
""" convert a string received from an api query to a classical dict """
text = str(text).replace('Content-Type: application/json', '').strip()
return json.loads(text) | 6fd3cfd63511d745df6268ffb1dbfeac0024785d | 255,624 |
import torch
def batch_img_vec(data, vocab):
"""Batch a sequence of image vectors."""
imgs = torch.stack(data, dim=1) # [K, B, dim]
return imgs | 1bc6f5b53f1604db73d2924aa3e2791896a78199 | 212,353 |
import hashlib
def sha1(text):
"""Generates SHA1 hash code from a text string"""
return hashlib.sha1(text).hexdigest() | 7a74e7804f0ef7ec250027b8f396a4449e506de7 | 440,942 |
import io
def readReviews(path):
"""
Function to store reviews in a list buffer.
Arguments
---------
path: location of reviews
Return
---------
list of reviews
"""
# Create an empty buffer to hold all the reviews
reviewBuf = []
# Open the file
with io.open(path,'r') as raw:
for line in raw:
reviewBuf.append(line)
return reviewBuf | e349cd18c63d5215e79f68cdfbc89a6a48371bd9 | 641,821 |
def split_column_to_dict(run_manifest, column="countries", sep=";"):
"""Splits a column in csv format into a dictionary"""
for index, row in run_manifest.iterrows():
countries = {
x.strip('" '): True
for x in row[column].strip().split(";")
}
countries.pop('', None)
run_manifest.loc[index, column] = [countries] # Listed as data frame tries to unpack otherwise
return run_manifest | 26aa9b4ebd419002d8f1a6443fc77abc12ba1589 | 467,000 |
def decode_char_to_bool(value='N'):
"""Decode SIP2 char representation to boolean."""
return value == 'Y' | 19a68f0af947ac50753080aa0611f1cfa4c5aca0 | 349,191 |
def alter_projects_to_metax(projects):
"""Convert project objects from frontend to comply with the Metax schema.
Arguments:
project (list<dict>): List of project objects, containing details and organizations
Returns:
list<dict>: List of project objects in Metax schema
"""
output = []
for project in projects:
details = project.get("details", {})
metax_project = {
"name": details.get("title"),
"identifier": details.get("identifier"),
"has_funder_identifier": details.get("fundingIdentifier"),
"funder_type": details.get("funderType"),
"source_organization": project.get("organizations", []),
"has_funding_agency": project.get("fundingAgencies", []),
}
output.append(metax_project)
return output | 45a38be5f66c78ee96feebfd0d3ba8e2efa04777 | 195,096 |
def size(heap):
"""The number of items in the heap."""
return len(heap) | 98cb88e27be9f099fdaac6c826f65974fabcbdd2 | 517,279 |
import json
def import_users_from_file(file):
"""Import our user data file and return the results."""
with open(file, newline='', encoding="utf-8") as load_file:
users = json.load(load_file)
return users | 8357d6d284cb308be4f9645fc46f8deda817fc56 | 527,669 |
def filter_content(soup, content_filter):
"""
Filter page content and return a list of words visible on the web page.
NOTE: The assignment specifies 'content' but doesn't explicitly state if this refers to visible
content or all source content. I have assumed visible content for this exercise. This can be altered
by specifying an alternative filter callback.
:param soup: object
BeautifulSoup object
:param content_filter: function
filter callback
:return: list
List of words found in page
"""
page_text = soup.findAll(text=True)
visible_text = filter(content_filter, page_text)
word_list = []
for row in visible_text:
if row.strip():
words = row.strip().split(' ')
word_list += [w.strip().replace(',', '').replace('.', '').lower() for w in words]
return word_list | cfe4735029e24c0f2cbc9856c7f3b5f98ab3df3b | 253,399 |
def extract_row(key: str, clientresult) -> dict:
""" Extract one row from the client result, and return result as dict
"""
data = clientresult[key]
return dict(data) | 9ec1a20538931f782864f5962a03ad0ba14e0caf | 346,038 |
def find_start(file_data):
"""Search the image for the start of raw data 'BCRM' marker"""
# Search the file for the start of the raw data
raw_start = file_data.find(b'BRCM')
#check if flag was found
if raw_start < 0:
raise LookupError('Flag "BRCM" not found in jpeg data. File contains no raw data')
return raw_start | 647604fbd3cc16f5a9f653a62972076bea701314 | 466,750 |
def rrd_esc(string):
"""Escape : so rrd arguments parse properly"""
return string.replace(':', r'\:') | abff3aeb8b421a52a4084cbffe78fc713c63f62f | 558,989 |
from typing import Dict
from typing import List
def get_in(d: Dict, keys: List, default=None):
"""Returns the value in a nested dict, where keys is a list of keys.
>>> get_in({"a": {"b": 1}}, ["a", "b"])
1
>>> get_in({"a": [0, 1, 2]}, ["a", 1])
1
>>> get_in({"a": {"b": 1}}, ["a", "x"], "not found")
'not found'
"""
if not keys:
return d
try:
return get_in(d[keys[0]], keys[1:], default)
except (KeyError, IndexError):
return default | bd60966ee65c196c5554bd915b6c274a40d266ae | 434,338 |
def frames2beats(n_frames, framerate, tempo):
"""Converts a number of frames to duration in beats,
given a framerate and tempo."""
return (n_frames / float(framerate)) * (tempo / 60.) | c268c9b880203c0ade34b859cdf127a05d358c65 | 239,233 |
import itertools
def cartesian_params(*paramList):
"""Make a test function or method parameterized by cartesian product
of parameters
.. code-block :: python
import unittest
from nose2.tools import cartesian_params
@cartesian_params((1, 2, 3), ('a', 'b'))
def test_nums(num, char):
assert num < ord(char)
class Test(unittest.TestCase):
@cartesian_params((1, 2, 3), ('a', 'b'))
def test_less_than(self, num, char):
self.assertLess(num, ord(char))
Parameters in the list must be defined as iterable objects such as
tuple or list.
"""
def decorator(func):
func.paramList = itertools.product(*paramList)
return func
return decorator | 61e9b4ef4bc93b90a4a4bb59e0a96146e1d644ba | 62,350 |
def square_of_sum(number):
"""
Return the square of sum of first [number] neutral integers
"""
return sum(range(1, number + 1)) ** 2 | 5b009b50d09efba576d404ca45236dbfc9a8efd0 | 62,621 |
import unicodedata
def _normalize(unistr):
"""Represent Unicode string with canonical composed form.
Unicode has alternative representations called normalization forms,
which means that e.g. "\\u017c" is the same character as "z\\u0307".
Normalization ensures portability since e.g. filenames on Mac OS X
are encoded with UTF-8 in NFD (decomposed), while Linux typically
uses NFC for that purpose.
"""
return unicodedata.normalize('NFC', unistr) | 058992ba0f531c8b7a0231587f23160aebeb5d0b | 316,790 |
def unwrap_if_scalar(obj):
"""
Unwraps obj if it is a sequence with a single item. Returns obj[0] if
len(obj) == 1 and obj otherwise.
"""
if len(obj) == 1:
return obj[0]
else:
return obj | 749fd6efd77030ff32ccc32056eb95f0bb717cd3 | 274,342 |
import copy
def recode_ids(cropobjects,
document_namespace,
dataset_namespace):
"""Recode all IDs of the given CropObjects, so that they are (hopefully)
globally unique. That is, from e.g. ``611``, we get
``MUSCIMA++_1.0::CVC-MUSCIMA_W-35_N-08_D-ideal::611.
Creates new CropObjects, does *not* modify the input in-place.
:param cropobjects: A list of CropObject instances.
:param document_namespace: An identifier of the given
CropObjectList. It should be unique for each dataset,
i.e. ``absolute_dataset_namespace``.
:param dataset_namespace: An identifier of the given
dataset. It should be globally unique (which is impossible
to guarantee, but at least within further versions of MUSCIMA++,
it should hold).
"""
output_cropobjects = []
for c in cropobjects:
c_out = copy.deepcopy(c)
uid = c.UID_DELIMITER.join([dataset_namespace,
document_namespace,
str(c.objid)])
c_out.set_uid(uid)
output_cropobjects.append(c_out)
return output_cropobjects | 2b8ace086c74938e36d4d30305f5b8040f1c1825 | 385,749 |
import torch
def pois_llik(x, mean):
"""Return the log likelihood of x distributed as Poisson"""
return x * torch.log(mean) - mean - torch.lgamma(x + 1) | f0ba834a41f8d108683ca93fd82ad479b520bfc5 | 478,904 |
def get_cmp_sign(a, b):
"""Convert comparison result to single character representation."""
if a < b:
return '<'
elif a > b:
return '>'
return '==' | 0ea842b3694ef7193749471167b974426b73bfd3 | 93,184 |
def find_moves(board):
"""returns list of valid moves"""
moves = []
for col in range(7):
if board[0][col] == " ":
moves.append(col)
return moves | 391cf536c7966a9906c5a13da37076326b11c109 | 377,840 |
import requests
def get_remote_version(url: str) -> str:
"""Gets the remote file and returns it as a long string."""
response = requests.get(url)
if response:
#print("Getting remote version")
s = response.text
return s
else:
return "Url Not Found." | 5d5ef45c5b74b326f9386214229529d9b71aca3d | 700,934 |
import urllib3
from bs4 import BeautifulSoup
import re
def soup_extract_links(url, linkclass):
"""Process URL using BeautifulSoup and find all elements of linkclass."""
http = urllib3.PoolManager()
r = http.request('GET', url)
soup = BeautifulSoup(r.data, 'html.parser')
return soup.find_all(class_=linkclass,
attrs={'href': re.compile("^http://")}) | badb69a2342c3f842f5338c05225f0cd2e312926 | 141,366 |
def add(value, arg):
""" Sum values """
return value + arg | 31a24b392591ea416c3d9717f640051f811a9f22 | 406,732 |
def findSelectedFields(fieldSearchList, fieldNames):
""" fieldSearchList is a list of fields, potentially with wild cards. fieldNames is the
real list of field names. Returns a list of all fields that match the SearchList.
"""
prefixes = []
exactMatches = []
for f in fieldSearchList:
if f.endswith("*"):
prefixes.append(f.rstrip("*"))
else:
exactMatches.append(f)
fieldsShown = []
for f in fieldNames:
if f in exactMatches:
fieldsShown.append(f)
continue
for pf in prefixes:
if f.startswith(pf):
fieldsShown.append(f)
break
return fieldsShown | 31f124f4f942a957707f3d17fd6456716fc7ece3 | 191,457 |
def get_values_map_keys(records, keyidx=0):
""" Given a dict of str->2-tuples, e.g.:
{'anat': [('modality', 'anat'), ('image_file', 'anat_hc.nii.gz')],
'pet': [('modality', 'pet'), ('image_file', 'pet_fdg.nii.gz')],
or
Given a list of list of 2-tuples of str, e.g.:
[[('modality', 'anat'), ('image_file', 'anat_hc.nii.gz')],
('modality', 'pet'), ('image_file', 'pet_fdg.nii.gz')],
Will return the unique values of each record value, in this case:
{'modality', 'image_file'}.
Parameters
----------
values_maps_dict: Dict[str->2-tuple]
Returns
-------
keys: set[str]
"""
if not records or records is None:
return []
if isinstance(records, dict):
itemset = records.values()
elif isinstance(records, list):
itemset = records
else:
raise NotImplementedError('Expected a `dict` or a `list of list` as `records, '
'got {}.'.format(type(records)))
crumb_args = set()
for items in itemset:
crumb_args = crumb_args.union(set([t[keyidx] for t in items]))
return crumb_args | cfecb13857e72014c9ba0472404bffdf5af076d1 | 51,020 |
import re
def is_dynamic_reference(input):
"""
Checks if the given input is a dynamic reference. Dynamic references follow the pattern '{{resolve:service-name:reference-key}}'
This method does not validate if the dynamic reference is valid or not, only if it follows the valid pattern: {{resolve:service-name:reference-key}}
:param input: Input value to check if it is a dynamic reference
:return: True, if yes
"""
pattern = re.compile("^{{resolve:([a-z-]+):(.+)}}$")
if input is not None and isinstance(input, str):
if pattern.match(input):
return True
return False | 0f14bf2a24cd9cba2805c23a27c00ed3136c94a3 | 151,325 |
def encryptMessage(key, message):
"""
Function to encrypt with transposition algorithm.
Two arguments :
- key : key of transposition
- message : text to encrypt
"""
# Each string in ciphertext represents a column in the grid.
ciphertext = [''] * key
# Loop through each column in ciphertext.
for column in range(key):
currentIndex = column
# Keep looping until currentIndex goes past the message length.
while currentIndex < len(message):
# Place the character at currentIndex in message at the
# end of the current column in the ciphertext list.
ciphertext[column] += message[currentIndex]
# move currentIndex over
currentIndex += key
# Convert the ciphertext list into a single string value and return it.
return ''.join(ciphertext) | 74f8dae884ce8015ea802ab5ce16127f2c6ffc42 | 328,930 |
def calc_fixed_bn(func, in_data, **kwargs):
"""[FixedBatchNormalization](https://docs.chainer.org/en/v4.3.0/reference/generated/chainer.functions.fixed_batch_normalization.html)
Test-mode batch normalization.
It consists of normalization part (using $\mu$ and $\sigma$) and
bias part ($\\gamma$ and $\\beta$), both are composed of
elementwise scale and shift. However this can actually be fused into single
scale and shift operation.
Therefore, regardless of existence of bias ($\\gamma$ and $\\beta$),
computational cost is always $2 \|x\|$ FLOPs.
Since scale-and-shift operation can be done by FMA,
it becomes $\|x\|$ FLOPs if `fma_1flop` is set to `True`.
Due to the same reason as explained above, reading learned scale and shift
parameter is required only once (not twice) regardless of bias existence.
Both are 1-dimensional array with $c_{\mathrm{in}}$ elements.
| Item | Value |
|:--------------|:------|
| FLOPs(FMA) | $$ \| x \| $$ |
| FLOPs(no-FMA) | $$ 2 \| x \| $$ |
| mread | $$ \|x\| + 2 c_{\mathrm{in}} $$ |
| mwrite | $$ \| x \| $$ |
| params | `eps`: epsilon for BN |
"""
x, _, _, mean, var = in_data
x = in_data[0]
n_elements = len(x.flatten())
if kwargs.get('fma_1flop'):
flops = n_elements
else:
flops = n_elements * 2 # *2 <- scale and shift
mread = n_elements + len(mean) + len(var)
mwrite = n_elements
return (flops, mread, mwrite, {'eps': func.eps}) | 8f20d0210effb07989a35b6b439d3144b0fe6790 | 22,492 |
def normalized(z):
"""Returns the complex number with the same argument/phase
but with a magnitude of 1."""
try:
return z/abs(z)
except ZeroDivisionError:
raise ZeroDivisionError("Cannot normalize 0.") | 441cbe83fbd88319830231d62822b85fcffc6ce3 | 35,089 |
def _lisp_deps_manifest(ctx, lisp_info):
"""Creates a file that lists all Lisp files needed by the target in order."""
out = ctx.actions.declare_file(ctx.label.name + ".deps")
content = ctx.actions.args()
content.set_param_file_format("multiline")
content.add_joined(
lisp_info.features,
join_with = "\n",
format_each = "feature: %s",
)
content.add_joined(
lisp_info.srcs,
join_with = "\n",
format_each = "src: %s",
)
ctx.actions.write(
output = out,
content = content,
)
return out | 55bafb7567127cca257d3ce5c0434a192be16d93 | 436,477 |
def ingest_dns_record(neo4j_session, name, value, type, update_tag, points_to_record):
"""
Ingest a new DNS record
:param neo4j_session: Neo4j session object
:param name: record name
:param value: record value
:param type: record type
:param update_tag: Update tag to set the node with and childs
:param points_to_record: parent record to set DNS_POINTS_TO relationship to. Can be None
:return: the intel graph node id for the new/merged record
"""
ingest = """
MERGE (record:DNSRecord{id: {Id}})
ON CREATE SET record.firstseen = timestamp(), record.name = {Name}, record.type = {Type}
SET record.lastupdated = {update_tag}, record.value = {Value}
WITH record
MATCH (n{id: {PointsToId}})
MERGE (record)-[r:DNS_POINTS_TO]->(n)
ON CREATE SET r.firstseen = timestamp()
SET r.lastupdated = {update_tag}
"""
record_id = f"{name}+{type}"
neo4j_session.run(
ingest,
Id=record_id,
Name=name,
Type=type,
Value=value,
PointsToId=points_to_record,
update_tag=update_tag,
)
return record_id | d87ed351395b9ca0dd726914fcddd22f92721af9 | 619,996 |
from typing import Any
def _contains_str_like(pat: Any) -> bool:
"""Determine if the object is a str-like or array of str-like."""
if isinstance(pat, (str, bytes)):
return True
if not hasattr(pat, "dtype"):
return False
return pat.dtype.kind in ["U", "S"] | 4b2cf9d2f300acf3c8435f3ddcd8e69c12b0e954 | 307,284 |
def dict_from_items_with_values(*dictionaries, **items):
"""Creates a dict with the inputted items; pruning any that are `None`.
Args:
*dictionaries(dict): Dictionaries of items to be pruned and included.
**items: Items to be pruned and included.
Returns:
dict: A dictionary containing all of the items with a 'non-None' value.
"""
dict_list = list(dictionaries)
dict_list.append(items)
result = {}
for d in dict_list:
for key, value in d.items():
if value is not None:
result[key] = value
return result | bd33872b6c50761e702353ad41afed25313d7af6 | 431,484 |
def information_gain(data, split_feature_name, label_feature_name, metric):
"""
Calculate the information gain using the given metric.
:param data: the data to anlyze
:param split_feature_name: the name of the split feature
:param label_feature_name: the name of the label feature
:param metric: the metric to use
:return: the information gain given by splitting on the split feature
"""
feature_values = data[split_feature_name]
possible_values = feature_values.unique()
expected_metric_value = 0
for possible_value in possible_values:
subset = data.loc[data[split_feature_name] == possible_value]
weight = len(subset) / len(data)
expected_metric_value += weight * metric(subset, label_feature_name)
return metric(data, label_feature_name) - expected_metric_value | 297fd372f455377154024480a829665f3037606b | 424,106 |
def resolve_none_string(val: str):
""" To avoid 'none' or 'NONE' as strings, we need to resolve this to the NoneType
Args:
val(str): The potential none value as string
Returns:
None if the string is resolvable to None or the input parameter itself
"""
val_u = val.upper()
if val_u == "NONE":
return None
return val | 807bc205be383687151dcb7fc04bf8f0c755dd0b | 435,225 |
def to_big(index):
"""Returns lambda to translate small to big move."""
return lambda action: (index, action) | b01ed8a0661f5c2f057d3ae6cbf93a41b64fbc9d | 407,521 |
import random
def create_word_sequence(words: list, length=10) -> str:
"""
Create string of random words (useful for testing).
:param words: list of words
:param length: amount of words
:return: string of random words
"""
return ' '.join(random.sample(words, length)) | 5f72af7a459277036b5a047f2abfde97c6b7a8ba | 373,403 |
import string
def get_tilt_series_label(tiltnumber):
"""Generates a tilt series label using the alphabet as a base 26 number
system
For example 0 would = a 25 = z 26 = ba 27 = bb
(there is no aa cause a=0)
:returns: tiltseries label by converting tiltnumber to base 26
"""
base = 26
convertedval = ''
num = int(tiltnumber)
while num >= base:
nextchar = num % base
convertedval = string.ascii_lowercase[nextchar] + convertedval
num = int(num / base)
convertedval = string.ascii_lowercase[num] + convertedval
return convertedval | 2684955f339344c336f89027e277fbb4c8d2fefa | 181,511 |
import re
def process_clinical_significance(clin_sig):
"""
Processes ClinVar clinical significance string into a format suitable for OT JSON schema.
Namely, splits multiple clinical significance levels into an array and normalises names (to lowercase, using only
spaces for delimiters). Multiple levels of clinical significance are separated using two delimieters: ('/', ', ').
See /clinvar-variant-types/README.md for further explanation. The output array is sorted alphabetically.
Example: 'Benign/Likely benign, risk_factor' โ ['benign', 'likely benign', 'risk factor'].
"""
return sorted(re.split('/|, ', clin_sig.lower().replace('_', ' '))) | d266ca548455a50dba3c9ec0aa08a11a52eab53b | 674,217 |
import itertools
def subsequences(iterable, seq=2):
"""Return subsequences of an iterable
Each element in the generator will be a tuple of `seq` elements that were
ordered in the iterable.
"""
iters = itertools.tee(iterable, seq)
for i, itr in enumerate(iters):
for _ in range(i):
next(itr, None)
return zip(*iters) | da436028d37f74729a2b5c2dfb74716da61efb2d | 18,382 |
def add_numbers(a, b):
"""Return the sum of the arguments 'a' and 'b'."""
return a + b | 158f79706ff064cb16eb4bd32178720410ab832e | 282,227 |
def say_hello(name='World'):
"""Say hello to someone
Parameters
----------
name : string
A string containing the name of the person who is to greeted.
Returns
-------
string : string
The greetings string.
"""
if not isinstance(name, str):
raise ValueError("I need a string.")
string = 'Hello {}!'.format(name)
return string | 5d9728462b11b7f73e5d4b67dc38531aa9ceceb7 | 518,251 |
def chi_resonant(x, amplitude, pos, width):
"""lorenzian chi resonance.
Parameters
----------
x : np.array
The x axis, wavenumbers of frequencies
amplitude:
The amplitude of the resonance
pos:
The position of the resonance
width:
The FWHM of the resonance
"""
A = amplitude
delta = pos - x
gamma = width / 2
ChiR_i = A * gamma / (delta**2 + gamma**2)
ChiR_r = A * delta / (delta**2 + gamma**2)
ChiR = ChiR_r + 1j * ChiR_i
return ChiR | 8ab2268e0e5af65936af212f0c776336d23c2605 | 57,688 |
from io import StringIO
def svg(plot, close=True):
"""
Creates SVG code and closes plot.
Args:
plot: matplotlib.pyplot
Plot from which the SVG should be made.
Returns:
str
SVG code.
"""
# make SVG
svg_file = StringIO()
plot.savefig(svg_file, format='svg')
svg = svg_file.getvalue()
svg_file.close()
# close plot
if close:
plot.close()
return svg | 4acdd6f346af2de672e538415795e0e1181ee4e4 | 18,272 |
def extractNameComponents(value):
"""This function tries to extract a family name and a last name from the input and returns them as a tuple.
>>> extractNameComponents('Lieber, Sven')
('Lieber', 'Sven')
>>> extractNameComponents('van Gogh, Vincent')
('van Gogh', 'Vincent')
Empty strings are returned if it did not work. If there is only one value, we assume the family name
>>> extractNameComponents('')
('', '')
>>> extractNameComponents('van Gogh')
('van Gogh', '')
>>> extractNameComponents('Hermann')
('Hermann', '')
"""
familyName = ''
givenName = ''
if value != '':
components = value.split(',')
if len(components) == 0:
familyName = value
elif len(components) == 1:
familyName = components[0].strip()
elif len(components) > 1:
familyName = components[0].strip()
givenName = components[1].strip()
return (familyName, givenName) | 701c0c82cf459236fc4761c0a85b81871257c050 | 513,210 |
from typing import List
from typing import Iterator
import itertools
def flatten(x: List[List]) -> Iterator:
"""
Flatten a list of list.
Args:
x: List of list of elements
Returns:
Iterator of flattened array.
"""
return itertools.chain.from_iterable(x) | 4f1b87bfacf7b63b4256475fa30b21e948fc7c9c | 98,660 |
def is_list_of_ints( intlist ):
""" Return True if list is a list of ints. """
if not isinstance(intlist,list): return False
for i in intlist:
if not isinstance(i,int): return False
return True | 9b3e72d97b0cf62c6987620f8970561a3bc45182 | 133,176 |
from typing import List
def get_corpora_for_lang(parallel_corpora: List[str], lang: str) -> List[str]:
"""
Fetches list of corpora that belong to given lang
parallel_corpora: List[str] where each element is a str with the format
"src_lang-tgt_lang:src_corpus,tgt_corpus"
Returns [] if corpora for lang is not found
"""
corpora = []
for parallel_corpus_config in parallel_corpora:
lang_pair, parallel_corpus = parallel_corpus_config.split(":")
src_lang, tgt_lang = lang_pair.split("-")
if src_lang == lang:
corpora.append(parallel_corpus.split(",")[0])
if tgt_lang == lang:
corpora.append(parallel_corpus.split(",")[1])
return corpora | b7e50ad0eaf17a39ae1e069f0c2a5c60c6ada9b3 | 329,590 |
from typing import List
import logging
def get_mc_definitions(resource: str) -> List[str]:
""" Load Minecraft values from the assets folder.
:param resource: The resource to load from disk.
:return: The lines of the file assets/minecraft_definitions/<resource>,
without the line breaks.
"""
logging.info(f"Loading definitions for '{resource}'")
with open(f"assets/minecraft_definitions/{resource}.txt", "r") as f:
return [line.rstrip("\n") for line in f.readlines() if line] | 3366dda6ddd880387ee4824e7806346b855d8af7 | 236,751 |
def MOTP_frame(pairs_num, distance, frame_id, gt_num, hp_num):
"""calculate MOTP of a frame
params
pairs_num: mapping pairs num for one frame
distance:
frame_id: id of frame which is processing
gt_num: object num of ground truth
hp_num: object num of hypothesis
-----------
return
MOTP_frame: MOTP for a frame
"""
MOTP_frame = distance / pairs_num
return MOTP_frame | f702a62c54c9722ff6c77820d0eed817973888c2 | 521,855 |
def get_direction(source, destination):
"""Find the direction drone needs to move to get from src to dest."""
lat_diff = abs(source[0] - destination[0])
long_diff = abs(source[1] - destination[1])
if lat_diff > long_diff:
if source[0] > destination[0]:
return "S"
else:
return "N"
else:
if source[1] > destination[1]:
return "W"
else:
return "E" | 224a8df79cbafbcf1eed8df522ab7f58cc93598d | 703,447 |
import hashlib
import itertools
def md5_with_prefix(input, prefix, start_with=0):
"""Determine first number that generates a hash with the given prefix."""
md5_input = hashlib.md5(input)
for number in itertools.count(start_with):
md5 = md5_input.copy()
md5.update(str(number).encode('ascii'))
if md5.hexdigest().startswith(prefix):
return number | 8cc402384c91fa0674ee3e451eff8b7a9c4b359c | 251,543 |
def dot(s, t):
"""Returns the mod-2 dot product of two n-bit strings s and t."""
return sum([s[i] * t[i] for i in range(len(s))]) % 2 | ce877632253b8c3843bbabe40ba9736ca4239066 | 359,292 |
import random
def t06_ManyGetPuts(C, pks, crypto, server):
"""Many clients upload many files and their contents are checked."""
clients = [C("c" + str(n)) for n in range(10)]
kvs = [{} for _ in range(10)]
for _ in range(200):
i = random.randint(0, 9)
uuid1 = "%08x" % random.randint(0, 100)
uuid2 = "%08x" % random.randint(0, 100)
clients[i].upload(str(uuid1), str(uuid2))
kvs[i][str(uuid1)] = str(uuid2)
good = total = 0
# verify integrity
for i, (c, kv) in enumerate(zip(clients, kvs)):
for k, v in kv.items():
vv = c.download(k)
if vv == v:
good += 1
total += 1
return float(good) / total | 384aa2b03169da613b25d2da60cdd1ec007aeed5 | 4,002 |
def is_prime(n):
"""
Return True if the given integer is prime, False
otherwise.
>>> is_prime(1)
False
>>> is_prime(2)
True
>>> is_prime(3)
True
>>> is_prime(4)
False
>>> is_prime(9)
False
>>> is_prime(10)
False
"""
if n < 2:
return False
if n == 2:
return True
if n % 2 == 0:
return False
for i in range(3, n):
if n % i == 0:
return False
return True | cc9ff9eedc00db258c28fe7262d6206c7c306e61 | 206,001 |
def getMaxLength(dic):
"""get the maximum list length of the values of a dictionary mapping lemmas to lists
of lexical types
"""
m=1
for k in dic.keys():
c=len(dic[k])
if c>m:
m=c
return m | baa2c0bd065f7a231c7c336984f2ca5dc8f83ef5 | 196,365 |
def merge_two_dicts(dict_1, dict_2):
"""Given two dicts, merge them into a new dict as a shallow copy.
:param dict_1: dictionary 1
:param dict_2: dictionary 2
:return: merged dictionary
"""
if not dict_1:
return dict_2
if not dict_2:
return dict_1
out_dict = dict_1.copy()
out_dict.update(dict_2)
return out_dict | 37e7d5f8edcca27704afa00fa1c41ef4f55c5dc0 | 185,190 |
def drop_unnecessary_metrics(submission_scores: dict, list_of_metrics: list):
"""Return submission_scores with every metric not in list_of_metrics removed."""
for data_name, data in submission_scores.items():
if data_name in ["param_count", "submission_name"]:
continue
filtered_scores = {k: v for k, v in data.items() if k in list_of_metrics}
submission_scores[data_name] = filtered_scores
return submission_scores | e406d02fcfa7ae3cf9a3ddb460034c499fa4ee24 | 544,674 |
import difflib
def get_diff(new_source, original_source, file_path):
"""
Get diff from two strings.
:param new_source:
:param original_source:
:param file_path:
:return: string with diff
:rtype str
"""
diff = difflib.unified_diff(
original_source.splitlines(),
new_source.splitlines(),
file_path,
file_path,
"(original)",
"(refactored)",
lineterm="",
)
diff_text = "\n".join(list(diff))
return diff_text | b431837b1e7b9ed50a8932de91d9bbe2a0973c6d | 87,495 |
def prettify_delta(delta):
"""
Returns a human-readable string representing the given timedelta. The
biggest unit is the hour, because a working day is too ambiguous.
"""
d = {}
d['minutes'], d['seconds'] = divmod(int(delta.total_seconds()), 60)
d['hours'], d['minutes'] = divmod(d['minutes'], 60)
li = []
for unit in ('hours', 'minutes', 'seconds'):
if d[unit]:
s = str(d[unit])+' '+unit
if d[unit] == 1:
s = s[:-1]
li.append(s)
s = ', '.join(li)
if not s:
s = '-'
return s | f91614c5bbf668bc9d27886ba79b187ae5410cba | 396,890 |
import socket
def get_src(dest):
"""
Attempts to learn the source IP from the outbound interface used to reach the provided
destination
:param dest: destination address/ip
:return: local ip
"""
s = socket.socket(socket.AF_INET, socket.SOCK_DGRAM, socket.IPPROTO_UDP)
s.connect((dest, 1))
source_ip = s.getsockname()[0]
s.close()
return source_ip | 2dcf711a3bc14a5d99490c85da94d09a8b099588 | 605,718 |
def sdiv(n):
"""
Safe division clamp, ensure n is not less than 1.
"""
return max(1, n) | 8ccccef8e095501a519501847d2cb58d9523b8b1 | 599,709 |
def prepare_prediction_column(prediction):
"""Return the prediction directly."""
return prediction | 42303330ee40cb37b6f5e1dbfd91056493050020 | 557,188 |
import re
def _find_doi_in_extra(item: dict) -> str:
"""Finds DOI in 'extra' field of `item` or returns an empty string.
Args:
item (dict): Zotero item.
Returns:
str: DOI
"""
doi_regex = r'10\.\d+/[-;()\w.]+'
if 'extra' in item['data'].keys():
doi_id = re.findall(doi_regex, item['data']['extra'])
if len(doi_id) > 0:
return doi_id[0]
else:
return ''
else:
return '' | c51c9e57040ac8ec1411c72f9a13894658a7773f | 555,268 |
def get_contained_functions(f):
""" Given a function object, return a tuple of function names called by f """
return f.__code__.co_names | 16111f5f96c712472e6fd5778eb1d93e72678556 | 523,688 |
def subset_adata(adata, subset, verbose=True):
"""
Subsets AnnData object on one or more .obs columns
Columns should contain 0/False for cells to throw out, and 1/True for cells to
keep. Keeps union of all labels provided in subset.
Parameters
----------
adata : anndata.AnnData
the data
subset : str or list of str
adata.obs labels to use for subsetting. Labels must be binary (0, "0", False,
"False" to toss - 1, "1", True, "True" to keep). Multiple labels will keep
intersection.
verbose : bool, optional (default=True)
print updates to console
Returns
-------
adata : anndata.AnnData
new anndata object as subset of `adata`
"""
if verbose:
print("Subsetting AnnData on {}".format(subset), end="")
if isinstance(subset, str):
subset = [subset]
# initialize .obs column for choosing cells
adata.obs["adata_subset_combined"] = 0
# create label as union of given subset args
for i in range(len(subset)):
adata.obs.loc[
adata.obs[subset[i]].isin(["True", True, 1.0, 1]), "adata_subset_combined"
] = 1
adata = adata[adata.obs["adata_subset_combined"] == 1, :].copy()
adata.obs.drop(columns="adata_subset_combined", inplace=True)
if verbose:
print(" - now {} cells and {} genes".format(adata.n_obs, adata.n_vars))
return adata | f33b51659d35ed62b12367893007ef2293611c9d | 556,232 |
import random
def random_sample_lst(lst):
"""
Argument Order: lst
Extracts the a random 25% of a given list
"""
return random.sample(lst, len(lst)//4) | 6c977a80d838623729a1957a27fde53e45e3e982 | 223,213 |
def _parse_csv_item_opts(entry):
"""Parse the _opts field in a SB Extended CSV item."""
# Accepting even slightly weirdly formatted entries:
entry = entry.strip()
if len(entry) == 0:
return {}
opts = {}
for opt in entry.split(" "):
opt_name, opt_val = opt.split(":")
opts[opt_name] = opt_val
return opts | 086ef26f5b6e69bf556bfe0a0f6b2e87a6f2b684 | 291,935 |
def conv_out_shape(in_shape, layers):
"""
Calculates output shape of input_shape going through a list of pytorch convolutional layers
in_shape: (H, W)
layers: list of convolution layers
"""
shape = in_shape
for layer in layers:
h_out = ((shape[0] + 2*layer.padding[0] - layer.dilation[0] * (layer.kernel_size[0] - 1)-1) / layer.stride[0])+1
w_out = ((shape[1] + 2*layer.padding[1] - layer.dilation[1] * (layer.kernel_size[1] - 1)-1) / layer.stride[1])+1
shape = (int(h_out), int(w_out))
return shape | b75fb479f47304be03aef20a36583ad8a2edc0de | 21,870 |