|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""Brill Iconclass AI Test Set data.""" |
|
|
|
|
|
import json |
|
import os |
|
from PIL import Image |
|
import datasets |
|
|
|
_CITATION = """\ |
|
@MISC{iconclass, |
|
title = {Brill Iconclass AI Test Set}, |
|
author={Etienne Posthumus}, |
|
year={2020} |
|
} |
|
""" |
|
|
|
|
|
_DESCRIPTION = """\ |
|
A dataset for applying machine learning to collections described with the Iconclass classification system. |
|
""" |
|
|
|
_HOMEPAGE = "https://labs.brill.com/ictestset/" |
|
|
|
_LICENSE = "https://creativecommons.org/publicdomain/zero/1.0/" |
|
|
|
_URL = "https://labs.brill.com/ictestset/779ba2ca9e977c58d818e3823a676973.zip" |
|
|
|
class BrillIconclass(datasets.GeneratorBasedBuilder): |
|
"""Brill IconClass AI dataset""" |
|
|
|
VERSION = datasets.Version("1.1.0") |
|
|
|
|
|
def _info(self): |
|
features = datasets.Features( |
|
{ |
|
"image": datasets.Image(), |
|
"label": [datasets.Value("string")] |
|
} |
|
) |
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=features, |
|
homepage=_HOMEPAGE, |
|
license=_LICENSE, |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
data_dir = dl_manager.download_and_extract(_URL) |
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={"data_json": os.path.join(data_dir, "data.json"), "data_dir": data_dir}, |
|
), |
|
] |
|
|
|
def _generate_examples(self, data_json, data_dir): |
|
with open(data_json, encoding="utf-8") as f: |
|
data = json.load(f) |
|
for row, item in enumerate(data.items()): |
|
filepath, labels = item |
|
image = Image.open(os.path.join(data_dir, filepath)) |
|
yield row, {"image": image, "label": labels} |
|
|