Datasets:

Modalities:
Text
Languages:
English
Size:
< 1K
Libraries:
Datasets
License:
File size: 10,285 Bytes
e844be7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""The Corpus of Late Modern English Texts, version 3.1 (CLMET3.1) has been created by Hendrik De Smet, 
Susanne Flach, Hans-Jürgen Diller and Jukka Tyrkkö, as an offshoot of a bigger project developing a database
 of text descriptors (Diller, De Smet & Tyrkkö 2011). CLMET3.1 is a principled collection of public domain 
 texts drawn from various online archiving projects. """

import os
import xml.etree.ElementTree as ET
import datasets
from bs4 import BeautifulSoup


_CITATION = """@article{de2015corpus,
  title={Corpus of Late Modern English texts (version 3.1)},
  author={De Smet, Hendrik and Flach, Susanne and Tyrkk{\"o}, Jukka and Diller, Hans-J{\"u}rgen},
  year={2015}
}
"""

_DESCRIPTION = """The Corpus of Late Modern English Texts, version 3.1 (CLMET3.1) has been created by Hendrik De Smet, 
Susanne Flach, Hans-Jürgen Diller and Jukka Tyrkkö, as an offshoot of a bigger project developing a database of text 
descriptors (Diller, De Smet & Tyrkkö 2011). CLMET3.1 is a principled collection of public domain texts drawn from 
various online archiving projects. This dataset can be used for part-of-speech tagging, NER and text classification
"""

_HOMEPAGE = "http://fedora.clarin-d.uni-saarland.de/clmet/clmet.html"

_LICENSE = "Creative Commons Attribution Non Commercial Share Alike 4.0 International"

_DATASETNAME = "clmet"

_URLS = {
    _DATASETNAME: "http://fedora.clarin-d.uni-saarland.de/clmet/clmet3_1.zip",
}

_POS_LIST = [
    "CC",
    "CD",
    "DT",
    "EX",
    "FW",
    "IN",
    "JJ",
    "JJR",
    "JJS",
    "MD",
    "NN",
    "NNS",
    "NP",
    "NPS",
    "PDT",
    "POS",
    "PP",
    "PP$",
    "RB",
    "RBR",
    "RBS",
    "RP",
    "SENT",
    "SYM",
    "TO",
    "UH",
    "VB",
    "VBD",
    "VBG",
    "VBN",
    "VBZ",
    "VBP",
    "WDT",
    "WP",
    "WP$",
    "WRB",
    "XX0",
    "CURR",
    "PUN",
    "LQUO",
    "RQUO",
    "BRL",
    "BRR",
    "LS",
]
_POS_LOOKUP = {tag: idx for idx, tag in enumerate(_POS_LIST)}
_CLASS_LIST = [
    "ADJ",
    "ADV",
    "ART",
    "CONJ",
    "INTJ",
    "PREP",
    "PRON",
    "PUNC",
    "SUBST",
    "SYM",
    "UNC",
    "VERB",
    "QUOT"
]
_CLASS_LOOKUP = {tag: idx for idx, tag in enumerate(_CLASS_LIST)}
logger = datasets.utils.logging.get_logger(__name__)


class CLMET_3_1(datasets.GeneratorBasedBuilder):
    """"""

    VERSION = datasets.Version("3.1.0")

    BUILDER_CONFIGS = [
        datasets.BuilderConfig(
            name="plain",
            version=VERSION,
            description="This format contains text as single string and the classifications",
        ),
        datasets.BuilderConfig(
            name="class",
            version=VERSION,
            description="This format contains the text as a list of tokens, annotated according to the simplified Oxford wordclass tags",
        ),
        datasets.BuilderConfig(
            name="pos",
            version=VERSION,
            description="This format contains the text as a list of tokens, annotated according to the Penn Treebank POS tags",
        ),
    ]

    DEFAULT_CONFIG_NAME = "plain"

    def _info(self):
        if self.config.name == "plain":
            features = datasets.Features(
                {
                    "text": datasets.Value("string"),
                    "genre": datasets.Value("string"),
                    "subgenre": datasets.Value("string"),
                    "year": datasets.Value("string"),
                    "quarter_cent": datasets.Value("string"),
                    "decade": datasets.Value("string"),
                    "title": datasets.Value("string"),
                    "author": datasets.Value("string"),
                    "notes": datasets.Value("string"),
                    "comments": datasets.Value("string"),
                    "period": datasets.Value("string"),
                    "id": datasets.Value("string"),
                }
            )
        elif self.config.name == "class":
            logger.warn(f"CLASS tags are as follows: {_CLASS_LIST}")
            features = datasets.Features(
                {
                    "text": datasets.Sequence(datasets.Value("string")),
                    "pos_tags": datasets.Sequence(datasets.Value("int32")),
                    "genre": datasets.Value("string"),
                    "subgenre": datasets.Value("string"),
                    "year": datasets.Value("string"),
                    "quarter_cent": datasets.Value("string"),
                    "decade": datasets.Value("string"),
                    "title": datasets.Value("string"),
                    "author": datasets.Value("string"),
                    "notes": datasets.Value("string"),
                    "comments": datasets.Value("string"),
                    "period": datasets.Value("string"),
                    "id": datasets.Value("string"),
                }
            )
        elif self.config.name == "pos":
            logger.warn(f"POS tags are as follows: {_POS_LIST}")
            features = datasets.Features(
                {
                    "text": datasets.Sequence(datasets.Value("string")),
                    "pos_tags": datasets.Sequence(datasets.Value("int32")),
                    "genre": datasets.Value("string"),
                    "subgenre": datasets.Value("string"),
                    "year": datasets.Value("string"),
                    "quarter_cent": datasets.Value("string"),
                    "decade": datasets.Value("string"),
                    "title": datasets.Value("string"),
                    "author": datasets.Value("string"),
                    "notes": datasets.Value("string"),
                    "comments": datasets.Value("string"),
                    "period": datasets.Value("string"),
                    "id": datasets.Value("string"),
                }
            )
        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=features,
            homepage=_HOMEPAGE,
            license=_LICENSE,
            citation=_CITATION,
        )

    def _split_generators(self, dl_manager):
        urls = _URLS[_DATASETNAME]
        data_dir = dl_manager.download_and_extract(urls)
        data_dir = os.path.join(data_dir, "clmet", "corpus", "txt")
        return [
            datasets.SplitGenerator(
                name=datasets.Split.TRAIN,
                # These kwargs will be passed to _generate_examples
                gen_kwargs={
                    "data_dir": data_dir,
                    "split": "train",
                },
            ),
        ]

    def parse_pos_text(self, content_parts, pos_type):
        tokens = []
        pos_tags = []
        unknown_tag = False
        malformed_token = False
        for content_part in content_parts:
            text = content_part.text.strip()
            for text_part in text.split():
                try:
                    token, pos_tag = text_part.split("_")
                    pos_tag = pos_tag.replace("\n", "").strip().upper()
                    if pos_type == "pos":
                        pos_tag_idx = _POS_LOOKUP.get(pos_tag,-1)
                    else:
                        pos_tag_idx = _CLASS_LOOKUP.get(pos_tag,-1)
                    if pos_tag_idx==-1:
                        unknown_tag = True
                    tokens.append(token)
                    pos_tags.append(pos_tag_idx)
                except Exception as e:
                    malformed_token = True
        return tokens, pos_tags, unknown_tag, malformed_token

    def parse_file(self, file, pos_type):
        with open(file, "r", encoding="utf-8") as fp:
            soup = BeautifulSoup(fp, features="html.parser")
            id = soup.id.text
            period = soup.period.text
            quarter_cent = soup.quartcent.text
            decade = soup.decade.text
            year = soup.year.text
            genre = soup.genre.text
            subgenre = soup.subgenre.text
            title = soup.title.text
            notes = soup.notes.text
            comments = soup.comments.text
            author = soup.author.text
            data_point = {
                "id": id,
                "period": period,
                "genre": genre,
                "subgenre": subgenre,
                "decade": decade,
                "quarter_cent": quarter_cent,
                "title": title,
                "notes": notes if notes else "",
                "comments": comments if comments else "",
                "author": author,
                "year": year,
            }
            content_parts = soup.find("text").find_all("p")

            if pos_type in ["pos", "class"]:
                content = self.parse_pos_text(content_parts, pos_type)
                if content[2]:
                    logger.warn(f'Unknown tag in sample {id}')
                if content[3]:
                    logger.warn(f'Malformed token in sample {id}')
                data_point["text"] = content[0]
                data_point["pos_tags"] = content[1]
            else:
                content = []
                for content_part in content_parts:
                    content.append(content_part.text)
                content = " ".join(content)
                data_point["text"] = content
            return (id, data_point)

    def _generate_examples(self, data_dir, split):
        final_data_dir = os.path.join(data_dir, self.config.name)
        for file in os.listdir(final_data_dir):
            id, data = self.parse_file(
                os.path.join(final_data_dir, file), self.config.name
            )
            yield id, data