# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """The Corpus of Late Modern English Texts, version 3.1 (CLMET3.1) has been created by Hendrik De Smet, Susanne Flach, Hans-Jürgen Diller and Jukka Tyrkkö, as an offshoot of a bigger project developing a database of text descriptors (Diller, De Smet & Tyrkkö 2011). CLMET3.1 is a principled collection of public domain texts drawn from various online archiving projects. """ import os import xml.etree.ElementTree as ET import datasets from bs4 import BeautifulSoup _CITATION = """@article{de2015corpus, title={Corpus of Late Modern English texts (version 3.1)}, author={De Smet, Hendrik and Flach, Susanne and Tyrkk{\"o}, Jukka and Diller, Hans-J{\"u}rgen}, year={2015} } """ _DESCRIPTION = """The Corpus of Late Modern English Texts, version 3.1 (CLMET3.1) has been created by Hendrik De Smet, Susanne Flach, Hans-Jürgen Diller and Jukka Tyrkkö, as an offshoot of a bigger project developing a database of text descriptors (Diller, De Smet & Tyrkkö 2011). CLMET3.1 is a principled collection of public domain texts drawn from various online archiving projects. This dataset can be used for part-of-speech tagging, NER and text classification """ _HOMEPAGE = "http://fedora.clarin-d.uni-saarland.de/clmet/clmet.html" _LICENSE = "Creative Commons Attribution Non Commercial Share Alike 4.0 International" _DATASETNAME = "clmet" _URLS = { _DATASETNAME: "http://fedora.clarin-d.uni-saarland.de/clmet/clmet3_1.zip", } _POS_LIST = [ "CC", "CD", "DT", "EX", "FW", "IN", "JJ", "JJR", "JJS", "MD", "NN", "NNS", "NP", "NPS", "PDT", "POS", "PP", "PP$", "RB", "RBR", "RBS", "RP", "SENT", "SYM", "TO", "UH", "VB", "VBD", "VBG", "VBN", "VBZ", "VBP", "WDT", "WP", "WP$", "WRB", "XX0", "CURR", "PUN", "LQUO", "RQUO", "BRL", "BRR", "LS", ] _POS_LOOKUP = {tag: idx for idx, tag in enumerate(_POS_LIST)} _CLASS_LIST = [ "ADJ", "ADV", "ART", "CONJ", "INTJ", "PREP", "PRON", "PUNC", "SUBST", "SYM", "UNC", "VERB", "QUOT" ] _CLASS_LOOKUP = {tag: idx for idx, tag in enumerate(_CLASS_LIST)} logger = datasets.utils.logging.get_logger(__name__) class CLMET_3_1(datasets.GeneratorBasedBuilder): """""" VERSION = datasets.Version("3.1.0") BUILDER_CONFIGS = [ datasets.BuilderConfig( name="plain", version=VERSION, description="This format contains text as single string and the classifications", ), datasets.BuilderConfig( name="class", version=VERSION, description="This format contains the text as a list of tokens, annotated according to the simplified Oxford wordclass tags", ), datasets.BuilderConfig( name="pos", version=VERSION, description="This format contains the text as a list of tokens, annotated according to the Penn Treebank POS tags", ), ] DEFAULT_CONFIG_NAME = "plain" def _info(self): if self.config.name == "plain": features = datasets.Features( { "text": datasets.Value("string"), "genre": datasets.Value("string"), "subgenre": datasets.Value("string"), "year": datasets.Value("string"), "quarter_cent": datasets.Value("string"), "decade": datasets.Value("string"), "title": datasets.Value("string"), "author": datasets.Value("string"), "notes": datasets.Value("string"), "comments": datasets.Value("string"), "period": datasets.Value("string"), "id": datasets.Value("string"), } ) elif self.config.name == "class": logger.warn(f"CLASS tags are as follows: {_CLASS_LIST}") features = datasets.Features( { "text": datasets.Sequence(datasets.Value("string")), "pos_tags": datasets.Sequence(datasets.Value("int32")), "genre": datasets.Value("string"), "subgenre": datasets.Value("string"), "year": datasets.Value("string"), "quarter_cent": datasets.Value("string"), "decade": datasets.Value("string"), "title": datasets.Value("string"), "author": datasets.Value("string"), "notes": datasets.Value("string"), "comments": datasets.Value("string"), "period": datasets.Value("string"), "id": datasets.Value("string"), } ) elif self.config.name == "pos": logger.warn(f"POS tags are as follows: {_POS_LIST}") features = datasets.Features( { "text": datasets.Sequence(datasets.Value("string")), "pos_tags": datasets.Sequence(datasets.Value("int32")), "genre": datasets.Value("string"), "subgenre": datasets.Value("string"), "year": datasets.Value("string"), "quarter_cent": datasets.Value("string"), "decade": datasets.Value("string"), "title": datasets.Value("string"), "author": datasets.Value("string"), "notes": datasets.Value("string"), "comments": datasets.Value("string"), "period": datasets.Value("string"), "id": datasets.Value("string"), } ) return datasets.DatasetInfo( description=_DESCRIPTION, features=features, homepage=_HOMEPAGE, license=_LICENSE, citation=_CITATION, ) def _split_generators(self, dl_manager): urls = _URLS[_DATASETNAME] data_dir = dl_manager.download_and_extract(urls) data_dir = os.path.join(data_dir, "clmet", "corpus", "txt") return [ datasets.SplitGenerator( name=datasets.Split.TRAIN, # These kwargs will be passed to _generate_examples gen_kwargs={ "data_dir": data_dir, "split": "train", }, ), ] def parse_pos_text(self, content_parts, pos_type): tokens = [] pos_tags = [] unknown_tag = False malformed_token = False for content_part in content_parts: text = content_part.text.strip() for text_part in text.split(): try: token, pos_tag = text_part.split("_") pos_tag = pos_tag.replace("\n", "").strip().upper() if pos_type == "pos": pos_tag_idx = _POS_LOOKUP.get(pos_tag,-1) else: pos_tag_idx = _CLASS_LOOKUP.get(pos_tag,-1) if pos_tag_idx==-1: unknown_tag = True tokens.append(token) pos_tags.append(pos_tag_idx) except Exception as e: malformed_token = True return tokens, pos_tags, unknown_tag, malformed_token def parse_file(self, file, pos_type): with open(file, "r", encoding="utf-8") as fp: soup = BeautifulSoup(fp, features="html.parser") id = soup.id.text period = soup.period.text quarter_cent = soup.quartcent.text decade = soup.decade.text year = soup.year.text genre = soup.genre.text subgenre = soup.subgenre.text title = soup.title.text notes = soup.notes.text comments = soup.comments.text author = soup.author.text data_point = { "id": id, "period": period, "genre": genre, "subgenre": subgenre, "decade": decade, "quarter_cent": quarter_cent, "title": title, "notes": notes if notes else "", "comments": comments if comments else "", "author": author, "year": year, } content_parts = soup.find("text").find_all("p") if pos_type in ["pos", "class"]: content = self.parse_pos_text(content_parts, pos_type) if content[2]: logger.warn(f'Unknown tag in sample {id}') if content[3]: logger.warn(f'Malformed token in sample {id}') data_point["text"] = content[0] data_point["pos_tags"] = content[1] else: content = [] for content_part in content_parts: content.append(content_part.text) content = " ".join(content) data_point["text"] = content return (id, data_point) def _generate_examples(self, data_dir, split): final_data_dir = os.path.join(data_dir, self.config.name) for file in os.listdir(final_data_dir): id, data = self.parse_file( os.path.join(final_data_dir, file), self.config.name ) yield id, data