Datasets:

Modalities:
Tabular
Text
Formats:
parquet
Languages:
English
Libraries:
Datasets
pandas
License:
davanstrien HF staff commited on
Commit
f3e1b99
1 Parent(s): d78c52f

Delete loading script

Browse files
Files changed (1) hide show
  1. on_the_books.py +0 -81
on_the_books.py DELETED
@@ -1,81 +0,0 @@
1
- # coding=utf-8
2
- # Copyright 2021 The HuggingFace Datasets Authors and the current dataset script contributor.
3
- #
4
- # Licensed under the Apache License, Version 2.0 (the "License");
5
- # you may not use this file except in compliance with the License.
6
- # You may obtain a copy of the License at
7
- #
8
- # http://www.apache.org/licenses/LICENSE-2.0
9
- #
10
- # Unless required by applicable law or agreed to in writing, software
11
- # distributed under the License is distributed on an "AS IS" BASIS,
12
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
- # See the License for the specific language governing permissions and
14
- # limitations under the License.
15
- """On the Books Dataset"""
16
-
17
- import csv
18
-
19
- import datasets
20
-
21
-
22
- _CITATION = """TODO"""
23
-
24
- _DESCRIPTION = """\
25
- This file is the training set that was used to train an algorithm to identify Jim Crow laws.
26
- It contains laws that are labeled as "Jim Crow" (jim_crow=1) or "Not Jim Crow" (jim_crow=0).
27
- The source of the determination is also provided.
28
-
29
- """
30
-
31
- _HOMEPAGE = "https://onthebooks.lib.unc.edu/"
32
-
33
- _LICENSE = "CC BY 3.0"
34
-
35
- _URL = "https://cdr.lib.unc.edu/downloads/76537b20b?locale=en"
36
-
37
-
38
- class OnTheBooks(datasets.GeneratorBasedBuilder):
39
- VERSION = datasets.Version("1.1.0")
40
-
41
- def _info(self):
42
- features = datasets.Features(
43
- {
44
- "id": datasets.Value("string"),
45
- "source": datasets.Value("string"),
46
- "jim_crow": datasets.ClassLabel(names=["no_jim_crow", "jim_crow"]),
47
- "type": datasets.Value("string"),
48
- "chapter_num": datasets.Value("int32"),
49
- "section_num": datasets.Value("int32"),
50
- "chapter_text": datasets.Value("string"),
51
- "section_text": datasets.Value("string"),
52
- }
53
- )
54
-
55
- return datasets.DatasetInfo(
56
- description=_DESCRIPTION,
57
- features=features,
58
- supervised_keys=None,
59
- homepage=_HOMEPAGE,
60
- license=_LICENSE,
61
- citation=_CITATION,
62
- )
63
-
64
- def _split_generators(self, dl_manager):
65
- """Returns SplitGenerators."""
66
-
67
- data_file = dl_manager.download(_URL)
68
- return [
69
- datasets.SplitGenerator(
70
- name=datasets.Split.TRAIN,
71
- gen_kwargs={
72
- "filepath": data_file,
73
- },
74
- ),
75
- ]
76
-
77
- def _generate_examples(self, filepath):
78
- """Yields examples as (key, example) tuples."""
79
- with open(filepath, encoding="utf-8") as f:
80
- reader = csv.DictReader(f)
81
- yield from enumerate(reader)