Datasets:
File size: 11,262 Bytes
21d0c0d fb7df5f 21d0c0d fb7df5f 514b56b fb7df5f 514b56b fb7df5f b28e5a0 fb7df5f ab392dc fb7df5f ab392dc fb7df5f ab392dc fb7df5f 92b7b16 fb7df5f 92b7b16 fb7df5f 1f5103d fb7df5f 1f5103d fb7df5f ab392dc fb7df5f ab392dc 4a1a055 ab392dc 58b03f0 fb7df5f ab392dc fb7df5f 58b03f0 fb7df5f 5feba22 fb7df5f 58b03f0 fb7df5f 58b03f0 fb7df5f 58b03f0 fb7df5f 58b03f0 fb7df5f 58b03f0 fb7df5f 58b03f0 fb7df5f 58b03f0 fb7df5f 58b03f0 06e7bf3 fb7df5f 58b03f0 fb7df5f 58b03f0 fb7df5f 58b03f0 fb7df5f 58b03f0 fb7df5f 58b03f0 fb7df5f 58b03f0 fb7df5f 58b03f0 fb7df5f c5a56da fb7df5f 58b03f0 fb7df5f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 |
---
annotations_creators:
- expert-generated
language: []
language_creators:
- expert-generated
license:
- cc-by-4.0
multilinguality: []
pretty_name: YALTAi Tabular Dataset
size_categories:
- n<1K
source_datasets: []
tags:
- manuscripts
- lam
task_categories:
- object-detection
task_ids: []
---
# YALTAi Tabular Dataset
## Table of Contents
- [YALTAi Tabular Dataset](#YALTAi-Tabular-Dataset)
- [Table of Contents](#table-of-contents)
- [Dataset Description](#dataset-description)
- [Dataset Summary](#dataset-summary)
- [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
- [Dataset Structure](#dataset-structure)
- [Data Instances](#data-instances)
- [Data Fields](#data-fields)
- [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
- [Curation Rationale](#curation-rationale)
- [Source Data](#source-data)
- [Initial Data Collection and Normalization](#initial-data-collection-and-normalization)
- [Who are the source language producers?](#who-are-the-source-language-producers)
- [Annotations](#annotations)
- [Annotation process](#annotation-process)
- [Who are the annotators?](#who-are-the-annotators)
- [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
- [Social Impact of Dataset](#social-impact-of-dataset)
- [Discussion of Biases](#discussion-of-biases)
- [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
- [Dataset Curators](#dataset-curators)
- [Licensing Information](#licensing-information)
- [Citation Information](#citation-information)
- [Contributions](#contributions)
## Dataset Description
- **Homepage:** [https://doi.org/10.5281/zenodo.6827706](https://doi.org/10.5281/zenodo.6827706)
- **Paper:** [https://arxiv.org/abs/2207.11230](https://arxiv.org/abs/2207.11230)
### Dataset Summary
This dataset contains a subset of data used in the paper [You Actually Look Twice At it (YALTAi): using an object detectionapproach instead of region segmentation within the Kraken engine](https://arxiv.org/abs/2207.11230). This paper proposes treating page layout recognition on historical documents as an object detection task (compared to the usual pixel segmentation approach). This dataset covers pages with tabular information with the following objects "Header", "Col", "Marginal", "text".
### Supported Tasks and Leaderboards
- `object-detection`: This dataset can be used to train a model for object-detection on historic document images.
## Dataset Structure
This dataset has two configurations. These configurations both cover the same data and annotations but provide these annotations in different forms to make it easier to intergrate the data with existing processing pipelines.
- The first configuration `YOLO` uses the original format of the data.
- The second configuration converts the YOLO format into a format which is closer to the `COCO` annotation format. This is done in particular to make it easier to work with the `feature_extractor`s from the `Transformers` models for object detection which expect data to be in a COCO style format.
### Data Instances
Provide an JSON-formatted example and brief description of a typical instance in the dataset. If available, provide a link to further examples.
An example instance from the COCO config:
```
{'height': 2944,
'image': <PIL.PngImagePlugin.PngImageFile image mode=L size=2064x2944 at 0x7FA413CDA210>,
'image_id': 0,
'objects': [{'area': 435956,
'bbox': [0.0, 244.0, 1493.0, 292.0],
'category_id': 0,
'id': 0,
'image_id': '0',
'iscrowd': False,
'segmentation': []},
{'area': 88234,
'bbox': [305.0, 127.0, 562.0, 157.0],
'category_id': 2,
'id': 0,
'image_id': '0',
'iscrowd': False,
'segmentation': []},
{'area': 5244,
'bbox': [1416.0, 196.0, 92.0, 57.0],
'category_id': 2,
'id': 0,
'image_id': '0',
'iscrowd': False,
'segmentation': []},
{'area': 5720,
'bbox': [1681.0, 182.0, 88.0, 65.0],
'category_id': 2,
'id': 0,
'image_id': '0',
'iscrowd': False,
'segmentation': []},
{'area': 374085,
'bbox': [0.0, 540.0, 163.0, 2295.0],
'category_id': 1,
'id': 0,
'image_id': '0',
'iscrowd': False,
'segmentation': []},
{'area': 577599,
'bbox': [104.0, 537.0, 253.0, 2283.0],
'category_id': 1,
'id': 0,
'image_id': '0',
'iscrowd': False,
'segmentation': []},
{'area': 598670,
'bbox': [304.0, 533.0, 262.0, 2285.0],
'category_id': 1,
'id': 0,
'image_id': '0',
'iscrowd': False,
'segmentation': []},
{'area': 56,
'bbox': [284.0, 539.0, 8.0, 7.0],
'category_id': 1,
'id': 0,
'image_id': '0',
'iscrowd': False,
'segmentation': []},
{'area': 1868412,
'bbox': [498.0, 513.0, 812.0, 2301.0],
'category_id': 1,
'id': 0,
'image_id': '0',
'iscrowd': False,
'segmentation': []},
{'area': 307800,
'bbox': [1250.0, 512.0, 135.0, 2280.0],
'category_id': 1,
'id': 0,
'image_id': '0',
'iscrowd': False,
'segmentation': []},
{'area': 494109,
'bbox': [1330.0, 503.0, 217.0, 2277.0],
'category_id': 1,
'id': 0,
'image_id': '0',
'iscrowd': False,
'segmentation': []},
{'area': 52,
'bbox': [1734.0, 1013.0, 4.0, 13.0],
'category_id': 1,
'id': 0,
'image_id': '0',
'iscrowd': False,
'segmentation': []},
{'area': 90666,
'bbox': [0.0, 1151.0, 54.0, 1679.0],
'category_id': 1,
'id': 0,
'image_id': '0',
'iscrowd': False,
'segmentation': []}],
'width': 2064}
```
An example instance from the YOLO config:
``` python
{'image': <PIL.PngImagePlugin.PngImageFile image mode=L size=2064x2944 at 0x7FAA140F2450>,
'objects': {'bbox': [[747, 390, 1493, 292],
[586, 206, 562, 157],
[1463, 225, 92, 57],
[1725, 215, 88, 65],
[80, 1688, 163, 2295],
[231, 1678, 253, 2283],
[435, 1675, 262, 2285],
[288, 543, 8, 7],
[905, 1663, 812, 2301],
[1318, 1653, 135, 2280],
[1439, 1642, 217, 2277],
[1737, 1019, 4, 13],
[26, 1991, 54, 1679]],
'label': [0, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1]}}
```
Provide any additional information that is not covered in the other sections about the data here. In particular describe any relationships between data points and if these relationships are made explicit.
### Data Fields
The fields for the YOLO config:
- `image`: the image
- `objects`: the annotations which consits of:
- `bbox`: a list of bounding boxes for the image
- `label`: a list of labels for this image
The fields for the COCO config:
- `heigh`: height of the image
- `width`: width of the image
- `image`: image
- `image_id`: id for the image
- `objects`: annotations in COCO format, consisting of a list containing dictionaries with the following keys:
- `bbox`: bounding boxes for the images
- `category_id`: label for the image
- `image_id`: id for the image
- `iscrowd`: COCO is crowd flag
- `segmentation`: COCO segmentation annotations (empty in this case but kept for compatibility with other processing scripts)
### Data Splits
The dataset contains a train, validation and test split with the following numbers per split:
| | train | validation | test |
|----------|-------|------------|------|
| examples | 196 | 22 | 135 |
## Dataset Creation
> [this] dataset was produced using a single source, the Lectaurep Repertoires dataset [Rostaing et al., 2021], which served as a basis for only the training and development split. The testset is composed of original data, from various documents, from the 17th century up to the early 20th with a single soldier war report. The test set is voluntarily very different and out of domainwith column borders that are not drawn nor printed in certain cases, layout in some kind of masonry layout. p.8
.
### Curation Rationale
This dataset was created to produce a simplified version of the [Lectaurep Repertoires dataset](https://github.com/HTR-United/lectaurep-repertoires) which was found to contain:
> around 16 different ways to describe columns, from Col1 to Col7, the case-different col1-col7 and finally ColPair and ColOdd, which we all reduced to Col p.8
### Source Data
#### Initial Data Collection and Normalization
The LECTAUREP (LECTure Automatique de REPertoires) project, which began in 2018, is a joint initiative of the Minutier central des notaires de Paris, the National Archives and the
Minutier central des notaires de Paris of the National Archives, the [ALMAnaCH (Automatic Language Modeling and Analysis & Computational Humanities)](https://www.inria.fr/en/almanach) team at Inria and the EPHE (Ecole Pratique des Hautes Etudes), in partnership with the Ministry of Culture.
> The lectaurep-bronod corpus brings together 100 pages from the repertoire of Maître Louis Bronod (1719-1765), notary in Paris from December 13, 1719 to July 23, 1765. The pages concerned were written during the years 1742 to 1745.
#### Who are the source language producers?
[More information needed]
### Annotations
| | Train | Dev | Test | Total | Average area | Median area |
|----------|-------|-----|------|-------|--------------|-------------|
| Col | 724 | 105 | 829 | 1658 | 9.32 | 6.33 |
| Header | 103 | 15 | 42 | 160 | 6.78 | 7.10 |
| Marginal | 60 | 8 | 0 | 68 | 0.70 | 0.71 |
| Text | 13 | 5 | 0 | 18 | 0.01 | 0.00 |
| | | | - | | | |
#### Annotation process
[More information needed]
#### Who are the annotators?
[More information needed]
### Personal and Sensitive Information
This data does not contain information relating to living individuals.
## Considerations for Using the Data
### Social Impact of Dataset
There are a growing number of datasets related to page layout for historical documents. This dataset offers a differnet approach to annotating these datasets (focusing on object detection rather than pixel level annotations).
### Discussion of Biases
Historical documents contain a broad variety of page layouts this means that the ability for models trained on this dataset to transfer to documents which may contain very different layouts is not certain.
### Other Known Limitations
[More information needed]
## Additional Information
### Dataset Curators
### Licensing Information
[Creative Commons Attribution 4.0 International](https://creativecommons.org/licenses/by/4.0/legalcode)
### Citation Information
```
@dataset{clerice_thibault_2022_6827706,
author = {Clérice, Thibault},
title = {YALTAi: Tabular Dataset},
month = jul,
year = 2022,
publisher = {Zenodo},
version = {1.0.0},
doi = {10.5281/zenodo.6827706},
url = {https://doi.org/10.5281/zenodo.6827706}
}
```
[![DOI](https://zenodo.org/badge/DOI/10.5281/zenodo.6827706.svg)](https://doi.org/10.5281/zenodo.6827706)
### Contributions
Thanks to [@github-username](https://github.com/<github-username>) for adding this dataset.
|