Datasets:
annotations_creators:
- expert-generated
language: []
language_creators:
- expert-generated
license:
- cc-by-4.0
multilinguality: []
pretty_name: YALTAi Tabular Dataset
size_categories:
- n<1K
source_datasets: []
tags:
- manuscripts
- lam
task_categories:
- object-detection
task_ids: []
YALTAi Tabular Dataset
Table of Contents
- YALTAi Tabular Dataset
Dataset Description
- Homepage: https://doi.org/10.5281/zenodo.6827706
- Paper: https://arxiv.org/abs/2207.11230
Dataset Summary
This dataset contains a subset of data used in the paper You Actually Look Twice At it (YALTAi): using an object detectionapproach instead of region segmentation within the Kraken engine. This paper proposes treating page layout recognition on historical documents as an object detection task (compared to the usual pixel segmentation approach). This dataset covers pages with tabular information with the following objects "Header", "Col", "Marginal", "text".
Supported Tasks and Leaderboards
object-detection
: This dataset can be used to train a model for object-detection on historic document images.
Dataset Structure
This dataset has two configurations. These configurations both cover the same data and annotations but provide these annotations in different forms to make it easier to intergrate the data with existing processing pipelines.
- The first configuration
YOLO
uses the original format of the data. - The second configuration converts the YOLO format into a format which is closer to the
COCO
annotation format. This is done in particular to make it easier to work with thefeature_extractor
s from theTransformers
models for object detection which expect data to be in a COCO style format.
Data Instances
Provide an JSON-formatted example and brief description of a typical instance in the dataset. If available, provide a link to further examples.
An example instance from the COCO config:
{'height': 2944,
'image': <PIL.PngImagePlugin.PngImageFile image mode=L size=2064x2944 at 0x7FA413CDA210>,
'image_id': 0,
'objects': [{'area': 435956,
'bbox': [0.0, 244.0, 1493.0, 292.0],
'category_id': 0,
'id': 0,
'image_id': '0',
'iscrowd': False,
'segmentation': []},
{'area': 88234,
'bbox': [305.0, 127.0, 562.0, 157.0],
'category_id': 2,
'id': 0,
'image_id': '0',
'iscrowd': False,
'segmentation': []},
{'area': 5244,
'bbox': [1416.0, 196.0, 92.0, 57.0],
'category_id': 2,
'id': 0,
'image_id': '0',
'iscrowd': False,
'segmentation': []},
{'area': 5720,
'bbox': [1681.0, 182.0, 88.0, 65.0],
'category_id': 2,
'id': 0,
'image_id': '0',
'iscrowd': False,
'segmentation': []},
{'area': 374085,
'bbox': [0.0, 540.0, 163.0, 2295.0],
'category_id': 1,
'id': 0,
'image_id': '0',
'iscrowd': False,
'segmentation': []},
{'area': 577599,
'bbox': [104.0, 537.0, 253.0, 2283.0],
'category_id': 1,
'id': 0,
'image_id': '0',
'iscrowd': False,
'segmentation': []},
{'area': 598670,
'bbox': [304.0, 533.0, 262.0, 2285.0],
'category_id': 1,
'id': 0,
'image_id': '0',
'iscrowd': False,
'segmentation': []},
{'area': 56,
'bbox': [284.0, 539.0, 8.0, 7.0],
'category_id': 1,
'id': 0,
'image_id': '0',
'iscrowd': False,
'segmentation': []},
{'area': 1868412,
'bbox': [498.0, 513.0, 812.0, 2301.0],
'category_id': 1,
'id': 0,
'image_id': '0',
'iscrowd': False,
'segmentation': []},
{'area': 307800,
'bbox': [1250.0, 512.0, 135.0, 2280.0],
'category_id': 1,
'id': 0,
'image_id': '0',
'iscrowd': False,
'segmentation': []},
{'area': 494109,
'bbox': [1330.0, 503.0, 217.0, 2277.0],
'category_id': 1,
'id': 0,
'image_id': '0',
'iscrowd': False,
'segmentation': []},
{'area': 52,
'bbox': [1734.0, 1013.0, 4.0, 13.0],
'category_id': 1,
'id': 0,
'image_id': '0',
'iscrowd': False,
'segmentation': []},
{'area': 90666,
'bbox': [0.0, 1151.0, 54.0, 1679.0],
'category_id': 1,
'id': 0,
'image_id': '0',
'iscrowd': False,
'segmentation': []}],
'width': 2064}
An example instance from the YOLO config:
{'image': <PIL.PngImagePlugin.PngImageFile image mode=L size=2064x2944 at 0x7FAA140F2450>,
'objects': {'bbox': [[747, 390, 1493, 292],
[586, 206, 562, 157],
[1463, 225, 92, 57],
[1725, 215, 88, 65],
[80, 1688, 163, 2295],
[231, 1678, 253, 2283],
[435, 1675, 262, 2285],
[288, 543, 8, 7],
[905, 1663, 812, 2301],
[1318, 1653, 135, 2280],
[1439, 1642, 217, 2277],
[1737, 1019, 4, 13],
[26, 1991, 54, 1679]],
'label': [0, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1]}}
Provide any additional information that is not covered in the other sections about the data here. In particular describe any relationships between data points and if these relationships are made explicit.
Data Fields
The fields for the YOLO config:
image
: the imageobjects
: the annotations which consits of:bbox
: a list of bounding boxes for the imagelabel
: a list of labels for this image
The fields for the COCO config:
heigh
: height of the imagewidth
: width of the imageimage
: imageimage_id
: id for the imageobjects
: annotations in COCO format, consisting of a list containing dictionaries with the following keys:bbox
: bounding boxes for the imagescategory_id
: label for the imageimage_id
: id for the imageiscrowd
: COCO is crowd flagsegmentation
: COCO segmentation annotations (empty in this case but kept for compatibility with other processing scripts)
Data Splits
The dataset contains a train, validation and test split with the following numbers per split:
train | validation | test | |
---|---|---|---|
examples | 196 | 22 | 135 |
Dataset Creation
[this] dataset was produced using a single source, the Lectaurep Repertoires dataset [Rostaing et al., 2021], which served as a basis for only the training and development split. The testset is composed of original data, from various documents, from the 17th century up to the early 20th with a single soldier war report. The test set is voluntarily very different and out of domainwith column borders that are not drawn nor printed in certain cases, layout in some kind of masonry layout. p.8 .
Curation Rationale
This dataset was created to produce a simplified version of the Lectaurep Repertoires dataset which was found to contain:
around 16 different ways to describe columns, from Col1 to Col7, the case-different col1-col7 and finally ColPair and ColOdd, which we all reduced to Col p.8
Source Data
Initial Data Collection and Normalization
The LECTAUREP (LECTure Automatique de REPertoires) project, which began in 2018, is a joint initiative of the Minutier central des notaires de Paris, the National Archives and the Minutier central des notaires de Paris of the National Archives, the ALMAnaCH (Automatic Language Modeling and Analysis & Computational Humanities) team at Inria and the EPHE (Ecole Pratique des Hautes Etudes), in partnership with the Ministry of Culture.
The lectaurep-bronod corpus brings together 100 pages from the repertoire of Maître Louis Bronod (1719-1765), notary in Paris from December 13, 1719 to July 23, 1765. The pages concerned were written during the years 1742 to 1745.
Who are the source language producers?
[More information needed]
Annotations
Train | Dev | Test | Total | Average area | Median area | |
---|---|---|---|---|---|---|
Col | 724 | 105 | 829 | 1658 | 9.32 | 6.33 |
Header | 103 | 15 | 42 | 160 | 6.78 | 7.10 |
Marginal | 60 | 8 | 0 | 68 | 0.70 | 0.71 |
Text | 13 | 5 | 0 | 18 | 0.01 | 0.00 |
- |
Annotation process
[More information needed]
Who are the annotators?
[More information needed]
Personal and Sensitive Information
This data does not contain information relating to living individuals.
Considerations for Using the Data
Social Impact of Dataset
There are a growing number of datasets related to page layout for historical documents. This dataset offers a differnet approach to annotating these datasets (focusing on object detection rather than pixel level annotations).
Discussion of Biases
Historical documents contain a broad variety of page layouts this means that the ability for models trained on this dataset to transfer to documents which may contain very different layouts is not certain.
Other Known Limitations
[More information needed]
Additional Information
Dataset Curators
Licensing Information
Creative Commons Attribution 4.0 International
Citation Information
@dataset{clerice_thibault_2022_6827706,
author = {Clérice, Thibault},
title = {YALTAi: Tabular Dataset},
month = jul,
year = 2022,
publisher = {Zenodo},
version = {1.0.0},
doi = {10.5281/zenodo.6827706},
url = {https://doi.org/10.5281/zenodo.6827706}
}
Contributions
Thanks to @github-username for adding this dataset.