Datasets:
Commit
·
627ad4b
1
Parent(s):
21d0c0d
first draft
Browse files- dataset_infos.json +1 -0
- yalt_ai_tabular_dataset.py +123 -0
dataset_infos.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"default": {"description": "TODO", "citation": " @dataset{clerice_thibault_2022_6827706,\n author = {Cl\u00e9rice, Thibault},\n title = {YALTAi: Tabular Dataset},\n month = jul,\n year = 2022,\n publisher = {Zenodo},\n version = {1.0.0},\n doi = {10.5281/zenodo.6827706},\n url = {https://doi.org/10.5281/zenodo.6827706}\n}\n", "homepage": "https://doi.org/10.5281/zenodo.6827706", "license": "Creative Commons Attribution 4.0 International", "features": {"image": {"decode": true, "id": null, "_type": "Image"}, "objects": {"feature": {"label": {"num_classes": 4, "names": ["Header", "Col", "Marginal", "text"], "id": null, "_type": "ClassLabel"}, "bbox": {"feature": {"dtype": "int32", "id": null, "_type": "Value"}, "length": 4, "id": null, "_type": "Sequence"}}, "length": -1, "id": null, "_type": "Sequence"}}, "post_processed": null, "supervised_keys": null, "task_templates": null, "builder_name": "yalt_ai_tabular_dataset", "config_name": "default", "version": {"version_str": "1.0.0", "description": null, "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 60704, "num_examples": 196, "dataset_name": "yalt_ai_tabular_dataset"}, "validation": {"name": "validation", "num_bytes": 7537, "num_examples": 22, "dataset_name": "yalt_ai_tabular_dataset"}, "test": {"name": "test", "num_bytes": 47159, "num_examples": 135, "dataset_name": "yalt_ai_tabular_dataset"}}, "download_checksums": {"https://zenodo.org/record/6827706/files/yaltai-table.zip?download=1": {"num_bytes": 376190064, "checksum": "5b312faf097939302fb98ab0a8b35c007962d88978ea9dc28d2f560b89dc0657"}}, "download_size": 376190064, "post_processing_size": null, "dataset_size": 115400, "size_in_bytes": 376305464}}
|
yalt_ai_tabular_dataset.py
ADDED
@@ -0,0 +1,123 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
"""Script for reading 'Object Detection for Chess Pieces' dataset."""
|
15 |
+
|
16 |
+
|
17 |
+
import os
|
18 |
+
from glob import glob
|
19 |
+
|
20 |
+
import datasets
|
21 |
+
from PIL import Image
|
22 |
+
|
23 |
+
_CITATION = """\
|
24 |
+
@dataset{clerice_thibault_2022_6827706,
|
25 |
+
author = {Clérice, Thibault},
|
26 |
+
title = {YALTAi: Tabular Dataset},
|
27 |
+
month = jul,
|
28 |
+
year = 2022,
|
29 |
+
publisher = {Zenodo},
|
30 |
+
version = {1.0.0},
|
31 |
+
doi = {10.5281/zenodo.6827706},
|
32 |
+
url = {https://doi.org/10.5281/zenodo.6827706}
|
33 |
+
}
|
34 |
+
"""
|
35 |
+
|
36 |
+
_DESCRIPTION = """TODO"""
|
37 |
+
|
38 |
+
_HOMEPAGE = "https://doi.org/10.5281/zenodo.6827706"
|
39 |
+
|
40 |
+
_LICENSE = "Creative Commons Attribution 4.0 International"
|
41 |
+
|
42 |
+
_URL = "https://zenodo.org/record/6827706/files/yaltai-table.zip?download=1"
|
43 |
+
|
44 |
+
_CATEGORIES = ["Header", "Col", "Marginal", "text"]
|
45 |
+
|
46 |
+
|
47 |
+
class YaltAiTabularDataset(datasets.GeneratorBasedBuilder):
|
48 |
+
"""Object Detection for historic manuscripts"""
|
49 |
+
|
50 |
+
VERSION = datasets.Version("1.0.0")
|
51 |
+
|
52 |
+
def _info(self):
|
53 |
+
return datasets.DatasetInfo(
|
54 |
+
features=datasets.Features(
|
55 |
+
{
|
56 |
+
"image": datasets.Image(),
|
57 |
+
"objects": datasets.Sequence(
|
58 |
+
{
|
59 |
+
"label": datasets.ClassLabel(names=_CATEGORIES),
|
60 |
+
"bbox": datasets.Sequence(
|
61 |
+
datasets.Value("int32"), length=4
|
62 |
+
),
|
63 |
+
}
|
64 |
+
),
|
65 |
+
}
|
66 |
+
),
|
67 |
+
supervised_keys=None,
|
68 |
+
description=_DESCRIPTION,
|
69 |
+
homepage=_HOMEPAGE,
|
70 |
+
license=_LICENSE,
|
71 |
+
citation=_CITATION,
|
72 |
+
)
|
73 |
+
|
74 |
+
def _split_generators(self, dl_manager):
|
75 |
+
data_dir = dl_manager.download_and_extract(_URL)
|
76 |
+
return [
|
77 |
+
datasets.SplitGenerator(
|
78 |
+
name=datasets.Split.TRAIN,
|
79 |
+
gen_kwargs={
|
80 |
+
"data_dir": os.path.join(data_dir, "yaltai-table/", "train")
|
81 |
+
},
|
82 |
+
),
|
83 |
+
datasets.SplitGenerator(
|
84 |
+
name=datasets.Split.VALIDATION,
|
85 |
+
gen_kwargs={"data_dir": os.path.join(data_dir, "yaltai-table/", "val")},
|
86 |
+
),
|
87 |
+
datasets.SplitGenerator(
|
88 |
+
name=datasets.Split.TEST,
|
89 |
+
gen_kwargs={
|
90 |
+
"data_dir": os.path.join(data_dir, "yaltai-table/", "test")
|
91 |
+
},
|
92 |
+
),
|
93 |
+
]
|
94 |
+
|
95 |
+
def _generate_examples(self, data_dir):
|
96 |
+
image_dir = os.path.join(data_dir, "images")
|
97 |
+
label_dir = os.path.join(data_dir, "labels")
|
98 |
+
image_paths = sorted(glob(f"{image_dir}/*.jpg"))
|
99 |
+
label_paths = sorted(glob(f"{label_dir}/*.txt"))
|
100 |
+
|
101 |
+
for idx, (image_path, label_path) in enumerate(zip(image_paths, label_paths)):
|
102 |
+
im = Image.open(image_path)
|
103 |
+
width, height = im.size
|
104 |
+
|
105 |
+
with open(label_path, "r") as f:
|
106 |
+
lines = f.readlines()
|
107 |
+
|
108 |
+
objects = []
|
109 |
+
for line in lines:
|
110 |
+
line = line.strip().split()
|
111 |
+
bbox_class = int(line[0])
|
112 |
+
bbox_xcenter = int(float(line[1]) * width)
|
113 |
+
bbox_ycenter = int(float(line[2]) * height)
|
114 |
+
bbox_width = int(float(line[3]) * width)
|
115 |
+
bbox_height = int(float(line[4]) * height)
|
116 |
+
objects.append(
|
117 |
+
{
|
118 |
+
"label": bbox_class,
|
119 |
+
"bbox": [bbox_xcenter, bbox_ycenter, bbox_width, bbox_height],
|
120 |
+
}
|
121 |
+
)
|
122 |
+
|
123 |
+
yield idx, {"image": image_path, "objects": objects}
|