Datasets:
Commit
•
732a8b6
1
Parent(s):
06e7bf3
clean loading script
Browse files- dataset_infos.json +1 -1
- yalt_ai_tabular_dataset.py +4 -13
dataset_infos.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"default": {"description": "TODO", "citation": " @dataset{clerice_thibault_2022_6827706,\n author = {Cl\u00e9rice, Thibault},\n title = {YALTAi: Tabular Dataset},\n month = jul,\n year = 2022,\n publisher = {Zenodo},\n version = {1.0.0},\n doi = {10.5281/zenodo.6827706},\n url = {https://doi.org/10.5281/zenodo.6827706}\n}\n", "homepage": "https://doi.org/10.5281/zenodo.6827706", "license": "Creative Commons Attribution 4.0 International", "features": {"image": {"decode": true, "id": null, "_type": "Image"}, "objects": {"feature": {"label": {"num_classes": 4, "names": ["Header", "Col", "Marginal", "text"], "id": null, "_type": "ClassLabel"}, "bbox": {"feature": {"dtype": "int32", "id": null, "_type": "Value"}, "length": 4, "id": null, "_type": "Sequence"}}, "length": -1, "id": null, "_type": "Sequence"}}, "post_processed": null, "supervised_keys": null, "task_templates": null, "builder_name": "yalt_ai_tabular_dataset", "config_name": "default", "version": {"version_str": "1.0.0", "description": null, "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 60704, "num_examples": 196, "dataset_name": "yalt_ai_tabular_dataset"}, "validation": {"name": "validation", "num_bytes": 7537, "num_examples": 22, "dataset_name": "yalt_ai_tabular_dataset"}, "test": {"name": "test", "num_bytes": 47159, "num_examples": 135, "dataset_name": "yalt_ai_tabular_dataset"}}, "download_checksums": {"https://zenodo.org/record/6827706/files/yaltai-table.zip?download=1": {"num_bytes": 376190064, "checksum": "5b312faf097939302fb98ab0a8b35c007962d88978ea9dc28d2f560b89dc0657"}}, "download_size": 376190064, "post_processing_size": null, "dataset_size": 115400, "size_in_bytes": 376305464}, "YOLO": {"description": "
|
|
|
1 |
+
{"default": {"description": "TODO", "citation": " @dataset{clerice_thibault_2022_6827706,\n author = {Cl\u00e9rice, Thibault},\n title = {YALTAi: Tabular Dataset},\n month = jul,\n year = 2022,\n publisher = {Zenodo},\n version = {1.0.0},\n doi = {10.5281/zenodo.6827706},\n url = {https://doi.org/10.5281/zenodo.6827706}\n}\n", "homepage": "https://doi.org/10.5281/zenodo.6827706", "license": "Creative Commons Attribution 4.0 International", "features": {"image": {"decode": true, "id": null, "_type": "Image"}, "objects": {"feature": {"label": {"num_classes": 4, "names": ["Header", "Col", "Marginal", "text"], "id": null, "_type": "ClassLabel"}, "bbox": {"feature": {"dtype": "int32", "id": null, "_type": "Value"}, "length": 4, "id": null, "_type": "Sequence"}}, "length": -1, "id": null, "_type": "Sequence"}}, "post_processed": null, "supervised_keys": null, "task_templates": null, "builder_name": "yalt_ai_tabular_dataset", "config_name": "default", "version": {"version_str": "1.0.0", "description": null, "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 60704, "num_examples": 196, "dataset_name": "yalt_ai_tabular_dataset"}, "validation": {"name": "validation", "num_bytes": 7537, "num_examples": 22, "dataset_name": "yalt_ai_tabular_dataset"}, "test": {"name": "test", "num_bytes": 47159, "num_examples": 135, "dataset_name": "yalt_ai_tabular_dataset"}}, "download_checksums": {"https://zenodo.org/record/6827706/files/yaltai-table.zip?download=1": {"num_bytes": 376190064, "checksum": "5b312faf097939302fb98ab0a8b35c007962d88978ea9dc28d2f560b89dc0657"}}, "download_size": 376190064, "post_processing_size": null, "dataset_size": 115400, "size_in_bytes": 376305464}, "YOLO": {"description": "Yalt AI Tabular Dataset", "citation": " @dataset{clerice_thibault_2022_6827706,\n author = {Cl\u00e9rice, Thibault},\n title = {YALTAi: Tabular Dataset},\n month = jul,\n year = 2022,\n publisher = {Zenodo},\n version = {1.0.0},\n doi = {10.5281/zenodo.6827706},\n url = {https://doi.org/10.5281/zenodo.6827706}\n}\n", "homepage": "https://doi.org/10.5281/zenodo.6827706", "license": "Creative Commons Attribution 4.0 International", "features": {"image": {"decode": true, "id": null, "_type": "Image"}, "objects": {"feature": {"label": {"num_classes": 4, "names": ["Header", "Col", "Marginal", "text"], "id": null, "_type": "ClassLabel"}, "bbox": {"feature": {"dtype": "int32", "id": null, "_type": "Value"}, "length": 4, "id": null, "_type": "Sequence"}}, "length": -1, "id": null, "_type": "Sequence"}}, "post_processed": null, "supervised_keys": null, "task_templates": null, "builder_name": "yalt_ai_tabular_dataset", "config_name": "YOLO", "version": {"version_str": "1.0.0", "description": null, "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 60704, "num_examples": 196, "dataset_name": "yalt_ai_tabular_dataset"}, "validation": {"name": "validation", "num_bytes": 7537, "num_examples": 22, "dataset_name": "yalt_ai_tabular_dataset"}, "test": {"name": "test", "num_bytes": 47159, "num_examples": 135, "dataset_name": "yalt_ai_tabular_dataset"}}, "download_checksums": {"https://zenodo.org/record/6827706/files/yaltai-table.zip?download=1": {"num_bytes": 376190064, "checksum": "5b312faf097939302fb98ab0a8b35c007962d88978ea9dc28d2f560b89dc0657"}}, "download_size": 376190064, "post_processing_size": null, "dataset_size": 115400, "size_in_bytes": 376305464}, "COCO": {"description": "Yalt AI Tabular Dataset", "citation": " @dataset{clerice_thibault_2022_6827706,\n author = {Cl\u00e9rice, Thibault},\n title = {YALTAi: Tabular Dataset},\n month = jul,\n year = 2022,\n publisher = {Zenodo},\n version = {1.0.0},\n doi = {10.5281/zenodo.6827706},\n url = {https://doi.org/10.5281/zenodo.6827706}\n}\n", "homepage": "https://doi.org/10.5281/zenodo.6827706", "license": "Creative Commons Attribution 4.0 International", "features": {"image_id": {"dtype": "int64", "id": null, "_type": "Value"}, "image": {"decode": true, "id": null, "_type": "Image"}, "width": {"dtype": "int32", "id": null, "_type": "Value"}, "height": {"dtype": "int32", "id": null, "_type": "Value"}, "objects": [{"category_id": {"num_classes": 4, "names": ["Header", "Col", "Marginal", "text"], "id": null, "_type": "ClassLabel"}, "image_id": {"dtype": "string", "id": null, "_type": "Value"}, "id": {"dtype": "int64", "id": null, "_type": "Value"}, "area": {"dtype": "int64", "id": null, "_type": "Value"}, "bbox": {"feature": {"dtype": "float32", "id": null, "_type": "Value"}, "length": 4, "id": null, "_type": "Sequence"}, "segmentation": [[{"dtype": "float32", "id": null, "_type": "Value"}]], "iscrowd": {"dtype": "bool", "id": null, "_type": "Value"}}]}, "post_processed": null, "supervised_keys": null, "task_templates": null, "builder_name": "yalt_ai_tabular_dataset", "config_name": "COCO", "version": {"version_str": "1.0.0", "description": null, "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 87171, "num_examples": 196, "dataset_name": "yalt_ai_tabular_dataset"}, "validation": {"name": "validation", "num_bytes": 11225, "num_examples": 22, "dataset_name": "yalt_ai_tabular_dataset"}, "test": {"name": "test", "num_bytes": 71491, "num_examples": 135, "dataset_name": "yalt_ai_tabular_dataset"}}, "download_checksums": {"https://zenodo.org/record/6827706/files/yaltai-table.zip?download=1": {"num_bytes": 376190064, "checksum": "5b312faf097939302fb98ab0a8b35c007962d88978ea9dc28d2f560b89dc0657"}}, "download_size": 376190064, "post_processing_size": null, "dataset_size": 169887, "size_in_bytes": 376359951}}
|
yalt_ai_tabular_dataset.py
CHANGED
@@ -1,4 +1,4 @@
|
|
1 |
-
# Copyright
|
2 |
#
|
3 |
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
# you may not use this file except in compliance with the License.
|
@@ -16,7 +16,6 @@
|
|
16 |
|
17 |
import os
|
18 |
from glob import glob
|
19 |
-
from re import L
|
20 |
|
21 |
import datasets
|
22 |
from PIL import Image
|
@@ -34,7 +33,7 @@ _CITATION = """\
|
|
34 |
}
|
35 |
"""
|
36 |
|
37 |
-
_DESCRIPTION = """
|
38 |
|
39 |
_HOMEPAGE = "https://doi.org/10.5281/zenodo.6827706"
|
40 |
|
@@ -71,7 +70,6 @@ class YaltAiTabularDataset(datasets.GeneratorBasedBuilder):
|
|
71 |
"image": datasets.Image(),
|
72 |
"width": datasets.Value("int32"),
|
73 |
"height": datasets.Value("int32"),
|
74 |
-
# "url": datasets.Value("string"),
|
75 |
}
|
76 |
)
|
77 |
object_dict = {
|
@@ -87,7 +85,6 @@ class YaltAiTabularDataset(datasets.GeneratorBasedBuilder):
|
|
87 |
if self.config.name == "YOLO":
|
88 |
features = datasets.Features(
|
89 |
{
|
90 |
-
# "image_id": datasets.Value("int32"),
|
91 |
"image": datasets.Image(),
|
92 |
"objects": datasets.Sequence(
|
93 |
{
|
@@ -168,16 +165,13 @@ class YaltAiTabularDataset(datasets.GeneratorBasedBuilder):
|
|
168 |
):
|
169 |
image_id = idx
|
170 |
annotations = []
|
171 |
-
image = Image.open(image_path) #
|
172 |
w, h = image.size
|
173 |
with open(label_path, "r") as f:
|
174 |
lines = f.readlines()
|
175 |
for line in lines:
|
176 |
line = line.strip().split()
|
177 |
-
|
178 |
-
category_id = line[
|
179 |
-
0
|
180 |
-
] # int(line[0]) + 1 # you start with annotation id with '1'
|
181 |
x_center = float(line[1])
|
182 |
y_center = float(line[2])
|
183 |
width = float(line[3])
|
@@ -201,12 +195,9 @@ class YaltAiTabularDataset(datasets.GeneratorBasedBuilder):
|
|
201 |
image_id,
|
202 |
category_id,
|
203 |
image_id,
|
204 |
-
# segmentation=opt.box2seg,
|
205 |
)
|
206 |
annotations.append(annotation)
|
207 |
-
# annotation_id += 1
|
208 |
|
209 |
-
# image_id += 1 # if you finished annotation work, updates the image id.
|
210 |
example = {
|
211 |
"image_id": image_id,
|
212 |
"image": image,
|
|
|
1 |
+
# Copyright 2022 The HuggingFace Datasets Authors and the current dataset script contributor.
|
2 |
#
|
3 |
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
# you may not use this file except in compliance with the License.
|
|
|
16 |
|
17 |
import os
|
18 |
from glob import glob
|
|
|
19 |
|
20 |
import datasets
|
21 |
from PIL import Image
|
|
|
33 |
}
|
34 |
"""
|
35 |
|
36 |
+
_DESCRIPTION = """Yalt AI Tabular Dataset"""
|
37 |
|
38 |
_HOMEPAGE = "https://doi.org/10.5281/zenodo.6827706"
|
39 |
|
|
|
70 |
"image": datasets.Image(),
|
71 |
"width": datasets.Value("int32"),
|
72 |
"height": datasets.Value("int32"),
|
|
|
73 |
}
|
74 |
)
|
75 |
object_dict = {
|
|
|
85 |
if self.config.name == "YOLO":
|
86 |
features = datasets.Features(
|
87 |
{
|
|
|
88 |
"image": datasets.Image(),
|
89 |
"objects": datasets.Sequence(
|
90 |
{
|
|
|
165 |
):
|
166 |
image_id = idx
|
167 |
annotations = []
|
168 |
+
image = Image.open(image_path) # Possibly conver to RGB?
|
169 |
w, h = image.size
|
170 |
with open(label_path, "r") as f:
|
171 |
lines = f.readlines()
|
172 |
for line in lines:
|
173 |
line = line.strip().split()
|
174 |
+
category_id = line[0]
|
|
|
|
|
|
|
175 |
x_center = float(line[1])
|
176 |
y_center = float(line[2])
|
177 |
width = float(line[3])
|
|
|
195 |
image_id,
|
196 |
category_id,
|
197 |
image_id,
|
|
|
198 |
)
|
199 |
annotations.append(annotation)
|
|
|
200 |
|
|
|
201 |
example = {
|
202 |
"image_id": image_id,
|
203 |
"image": image,
|