Datasets:

Tasks:
Other
Modalities:
Text
Formats:
parquet
Languages:
English
ArXiv:
Libraries:
Datasets
Dask
License:
File size: 10,859 Bytes
da0475a
 
 
 
 
 
 
 
 
 
 
 
 
 
f52f478
da0475a
 
 
 
 
 
 
 
 
 
 
 
 
 
f52f478
e37c8bf
 
 
 
da0475a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
# coding=utf-8
# Copyright 2020 BigScience Contributors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""P3 (Public Pool of Prompts)"""


import datasets
import glob
import json
import os
from collections import defaultdict
import tensorflow as tf


_CITATION = """\
TODO"""

_DESCRIPTION = """\
P3 (Pubic Pool of Prompts)is a collection of prompted English datasets covering a diverse set of NLP tasks. A prompt is the combination of an input template and a target template. The templates are functions mapping a data example into natural language for the input and target sequences. For example, in the case of an NLI dataset, the data example would include fields for *Premise, Hypothesis, Label*. An input template would be *If {Premise} is true, is it also true that {Hypothesis}?*, whereas a target template can be defined with the label choices *Choices[label]*. Here *Choices* is prompt-specific metadata that consists of the options *yes, maybe, no* corresponding to *label* being entailment (0), neutral (1) or contradiction (2).

Prompts are collected using [Promptsource](https://github.com/bigscience-workshop/promptsource), an interface to interactively write prompts on datasets, and collect prompt-specific metadata such as evaluation metrics. As of October 13th, there are 2'000 prompts collected for 270+ data(sub)sets. The collection of prompts is publicly available on [Promptsource](https://github.com/bigscience-workshop/promptsource).

To train [T0*](https://huggingface.co/bigscience/T0pp), we used a subset of the prompts available in Promptsource (see details [here](https://huggingface.co/bigscience/T0pp#training-data)). However, some of the prompts use `random.choice`, a method that selects uniformly at random an option in a list of valid possibilities. For reproducibility purposes, we release the collection of prompted examples used to train T0*. **The data available here are the materialized version of the prompted datasets used in [Multi-task enables task zero-shot generalization](TODO) which represent only a subset datasets for which there is at least one prompt on Promptsource.**
"""

_LICENSE = "Apache License 2.0"

_HOMEPAGE = "https://github.com/bigscience-workshop/promptsource"

_DATA_PATH = "./data/"


def load_cached_task(cache_dir, split):
    # TODO(Victor): this info.*.json is actually done twice... -> factorize
    with tf.io.gfile.GFile(os.path.join(cache_dir, f"info.{split}.json")) as f:
        split_info = json.load(f)
        features = split_info["features"]

    # Use `FixedLenSequenceFeature` for sequences with variable length.
    def _feature_config(shape, dtype):
        if dtype in ("int32", "bool"):
            # int32 and bool are stored as int64 in the tf.train.Example protobuf.
            dtype = "int64"
        if shape and shape[0] is None:
            return tf.io.FixedLenSequenceFeature(
                shape[1:], dtype, allow_missing=True
            )
        return tf.io.FixedLenFeature(shape, dtype)

    feature_description = {
        feat: _feature_config(**desc) for feat, desc in features.items()
    }

    tfrecords = os.path.join(
        cache_dir, f"{split}.tfrecord-*-of-*{split_info['num_shards']}"
    )
    ds = tf.data.TFRecordDataset(tf.io.gfile.glob(tfrecords))
    ds = ds.map(
        lambda pb: tf.io.parse_single_example(pb, feature_description),
        num_parallel_calls=tf.data.experimental.AUTOTUNE
    )
    # Cast features back to the types from the info JSON since some features
    # must be cast for storage (e.g., in32 is stored as int64).
    ds = ds.map(
        lambda x: {k: tf.cast(v, features[k]["dtype"]) for k, v in x.items()},
        num_parallel_calls=tf.data.experimental.AUTOTUNE
    )
    return ds


def find_task_splits_and_features():
    """Find the available tasks under ./data and their available splits and features."""
    task_and_their_splits = defaultdict(dict)
    for stats in glob.glob(f"{_DATA_PATH}/*/stats.*.json"):
        folder_path = os.path.dirname(stats)
        task_name = folder_path.split("/")[-1]
        split_name = os.path.basename(stats).split(".")[1]

        if not os.path.exists(f"{folder_path}/COMPLETED"):
            continue

        with open(stats, "r") as f:
            split_stats = json.load(f)
            nb_examples = split_stats["examples"]

        if nb_examples > 0:
            with open(os.path.join(folder_path, f"info.{split_name}.json")) as f:
                split_info = json.load(f)
                features = split_info["features"]

            # All splits under the same task have the same features dictionary (and thus the same features list)
            if task_and_their_splits[task_name] == {}:
                task_and_their_splits[task_name] = {
                    "splits": [],
                    "features": [],
                }

            task_and_their_splits[task_name]["splits"].append(split_name)
            if task_and_their_splits[task_name]["features"] == []:
                task_and_their_splits[task_name]["features"] = sorted(list(features.keys()))
            else:
                assert task_and_their_splits[task_name]["features"] == sorted(list(features.keys()))
    return task_and_their_splits


TASK_SPLITS_AND_FEATURES = find_task_splits_and_features()



class P3Config(datasets.BuilderConfig):
    """BuilderConfig for P3."""

    def __init__(self, splits, features, score_eval, **kwargs):
        """BuilderConfig for P3.

        Args:
          splits: `List[str]`, the lists of splits which are available for this task
          features: `List[str]`, the list of features for this task
          score_eval: `bool`, whether this is task formulated as a rank classification problem
          **kwargs: keyword arguments forwarded to super.
        """
        # Version history:
        # 0.1 initial commit
        super(P3Config, self).__init__(version=datasets.Version("0.1.0"), **kwargs)
        self.splits = splits
        self.features = features
        self.score_eval = score_eval


class P3(datasets.GeneratorBasedBuilder):
    """Subset of P3 used in `Multitask Prompted Training Enables Zero-Shot Task Generalization`"""

    BUILDER_CONFIGS = [
        P3Config(
            name=task_name,
            splits=splits_and_features["splits"],
            features=splits_and_features["features"],
            score_eval=task_name.endswith("score_eval")
        )
        for task_name, splits_and_features in TASK_SPLITS_AND_FEATURES.items()
    ]

    def _info(self):
        # All features available are: 'inputs', 'inputs_pretokenized', 'targets',
        # 'targets_pretokenized', 'idx', 'is_correct', 'weight', and 'answer_choices'
        _FEAT_MAPPING = {
            "answer_choices": datasets.Sequence(datasets.Value("string")),
            "inputs": datasets.Sequence(datasets.Value("int32")),
            "inputs_pretokenized": datasets.Value("string"),
            "targets": datasets.Sequence(datasets.Value("int32")),
            "targets_pretokenized": datasets.Value("string"),
            "idx": datasets.Sequence(datasets.Value("int32")),
            "weight": datasets.Value("float32"),
            "is_correct": datasets.Value("bool"),
        }

        features = {}
        for feat_name in self.config.features:
            features[feat_name] = _FEAT_MAPPING[feat_name]

        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=datasets.Features(features),
            supervised_keys=None,
            homepage=_HOMEPAGE,
            citation=_CITATION,
            license=_LICENSE,
        )

    def _split_generators(self, dl_manager):
        split_generators = []
        if "train" in self.config.splits:
            split_generators.append(
                datasets.SplitGenerator(
                    name=datasets.Split.TRAIN,
                    gen_kwargs={
                        "data_folder": os.path.join(_DATA_PATH, self.config.name),
                        "split": "train",
                    }
                )
            )
        if "validation" in self.config.splits:
            split_generators.append(
                datasets.SplitGenerator(
                    name=datasets.Split.VALIDATION,
                    gen_kwargs={
                        "data_folder": os.path.join(_DATA_PATH, self.config.name),
                        "split": "validation",
                    }
                )
            )
        if "test" in self.config.splits:
            split_generators.append(
                datasets.SplitGenerator(
                    name=datasets.Split.TEST,
                    gen_kwargs={
                        "data_folder": os.path.join(_DATA_PATH, self.config.name),
                        "split": "test",
                    }
                )
            )
        # Handle splits that are not train, validation or test
        special_splits = set(self.config.splits) - set(["train", "validation", "test"])
        for special_split_name in special_splits:
            split_generators.append(
                datasets.SplitGenerator(
                    name=datasets.Split(special_split_name),
                    gen_kwargs={
                        "data_folder": os.path.join(_DATA_PATH, self.config.name),
                        "split": special_split_name,
                    }
                )
            )
        return split_generators


    def _generate_examples(self, data_folder, split):
        """This function returns the examples in the raw (text) form."""
        _FEAT_MAPPING_FUNCTIONS = {
            "answer_choices": lambda x: [choice.decode("utf-8") for choice in x],
            "inputs": lambda x: x.tolist(),
            "inputs_pretokenized": lambda x: x.decode("utf-8"),
            "targets": lambda x: x.tolist(),
            "targets_pretokenized": lambda x: x.decode("utf-8"),
            "idx": lambda x: x.tolist(),
            "weight": lambda x: float(x),
            "is_correct": lambda x: x,
        }

        key = 0
        ds = load_cached_task(data_folder, split)
        for ex in ds.as_numpy_iterator():
            ex_dict = {}
            for feat_name, feat_value in ex.items():
                ex_dict[feat_name] = _FEAT_MAPPING_FUNCTIONS[feat_name](feat_value)
            yield key, ex_dict
            key += 1