birgermoell commited on
Commit
53923ee
·
1 Parent(s): 4a77416

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +28 -0
README.md ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ This dataset contains 2000 samples for dysarthric males, dysarthric females, non-dysarthric males, and non-dysarthric females.
2
+
3
+ Originally TORGO database contains 18GB of data, to download and for more information on data, please refer to the following link,
4
+ http://www.cs.toronto.edu/~complingweb/data/TORGO/torgo.html
5
+
6
+ This database should be used only for academic purposes.
7
+
8
+ Database / Licence Reference:
9
+ Rudzicz, F., Namasivayam, A.K., Wolff, T. (2012) The TORGO database of acoustic and articulatory speech from speakers with dysarthria. Language Resources and Evaluation, 46(4), pages 523--541.
10
+
11
+ Data Information:
12
+
13
+ It contains four folders with descriptions below,
14
+
15
+ dysarthria_female: 500 samples of dysarthric female audio recorded on different sessions.
16
+ dysarthria_male: 500 samples of dysarthric male audio recorded on different sessions.
17
+ non _dysarthria _female: 500 samples of non-dysarthric female audio recorded on different sessions.
18
+ non _dysarthria _male: 500 samples of non-dysarthric male audio recorded on different sessions.
19
+ data.csv
20
+ filename: audio file path
21
+ is_dysarthria: non-dysarthria or dysarthria
22
+ gender: male or female
23
+
24
+ Application of the data,
25
+
26
+ Applying deep learning technology to classify dysarthria and non-dysarthria patients
27
+ References:
28
+ Dumane, P., Hungund, B., Chavan, S. (2021). Dysarthria Detection Using Convolutional Neural Network. In: Pawar, P.M., Balasubramaniam, R., Ronge, B.P., Salunkhe, S.B., Vibhute, A.S., Melinamath, B. (eds) Techno-Societal 2020. Springer, Cham. https://doi.org/10.1007/978-3-030-69921-5_45