|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""A Dataset loading script for the QA-Adj dataset.""" |
|
|
|
|
|
from dataclasses import dataclass |
|
from typing import Optional, Tuple, Union, Iterable, Set |
|
from pathlib import Path |
|
import itertools |
|
import pandas as pd |
|
import datasets |
|
|
|
|
|
_DESCRIPTION = """\ |
|
The dataset contains question-answer pairs to capture adjectival semantics. |
|
This dataset was annotated by selected workers from Amazon Mechanical Turk. |
|
""" |
|
|
|
_LICENSE = """MIT License |
|
|
|
Copyright (c) 2022 Ayal Klein (kleinay) |
|
|
|
Permission is hereby granted, free of charge, to any person obtaining a copy |
|
of this software and associated documentation files (the "Software"), to deal |
|
in the Software without restriction, including without limitation the rights |
|
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell |
|
copies of the Software, and to permit persons to whom the Software is |
|
furnished to do so, subject to the following conditions: |
|
|
|
The above copyright notice and this permission notice shall be included in all |
|
copies or substantial portions of the Software. |
|
|
|
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
|
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
|
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE |
|
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER |
|
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, |
|
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE |
|
SOFTWARE.""" |
|
|
|
URL = "https://github.com/kleinay/QA-Adj-Dataset/raw/main/QAADJ_Dataset.zip" |
|
|
|
SUPPOERTED_DOMAINS = {"wikinews", "wikipedia"} |
|
|
|
@dataclass |
|
class QAAdjBuilderConfig(datasets.BuilderConfig): |
|
domains: Union[str, Iterable[str]] = "all" |
|
full_dataset: bool = False |
|
|
|
class QaAdj(datasets.GeneratorBasedBuilder): |
|
"""QAAdj: Question-Answer based semantics for adjectives. |
|
""" |
|
|
|
VERSION = datasets.Version("1.0.0") |
|
|
|
BUILDER_CONFIG_CLASS = QAAdjBuilderConfig |
|
|
|
BUILDER_CONFIGS = [ |
|
QAAdjBuilderConfig( |
|
name="default", version=VERSION, description="This provides the QAAdj dataset - train, dev and test" |
|
), |
|
QAAdjBuilderConfig( |
|
name="full", version=VERSION, full_dataset=True, |
|
description="""This provides the QAAdj dataset including gold reference |
|
(300 expert-annotated instances) and propbank comparison instances""" |
|
), |
|
] |
|
|
|
DEFAULT_CONFIG_NAME = ( |
|
"default" |
|
) |
|
|
|
def _info(self): |
|
features = datasets.Features( |
|
{ |
|
"sentence": datasets.Value("string"), |
|
"sent_id": datasets.Value("string"), |
|
"predicate_idx": datasets.Value("int32"), |
|
"predicate_idx_end": datasets.Value("int32"), |
|
"predicate": datasets.Value("string"), |
|
"object_question": datasets.Value("string"), |
|
"object_answer": datasets.Sequence(datasets.Value("string")), |
|
"domain_question": datasets.Value("string"), |
|
"domain_answer": datasets.Sequence(datasets.Value("string")), |
|
"reference_question": datasets.Value("string"), |
|
"reference_answer": datasets.Sequence(datasets.Value("string")), |
|
"extent_question": datasets.Value("string"), |
|
"extent_answer": datasets.Sequence(datasets.Value("string")), |
|
} |
|
) |
|
return datasets.DatasetInfo( |
|
|
|
description=_DESCRIPTION, |
|
|
|
features=features, |
|
|
|
|
|
|
|
supervised_keys=None, |
|
|
|
|
|
|
|
license=_LICENSE, |
|
|
|
|
|
) |
|
|
|
def _split_generators(self, dl_manager: datasets.utils.download_manager.DownloadManager): |
|
"""Returns SplitGenerators.""" |
|
|
|
|
|
domains: Set[str] = [] |
|
if self.config.domains == "all": |
|
domains = SUPPOERTED_DOMAINS |
|
elif isinstance(self.config.domains, str): |
|
if self.config.domains in SUPPOERTED_DOMAINS: |
|
domains = {self.config.domains} |
|
else: |
|
raise ValueError(f"Unrecognized domain '{self.config.domains}'; only {SUPPOERTED_DOMAINS} are supported") |
|
else: |
|
domains = set(self.config.domains) & SUPPOERTED_DOMAINS |
|
if len(domains) == 0: |
|
raise ValueError(f"Unrecognized domains '{self.config.domains}'; only {SUPPOERTED_DOMAINS} are supported") |
|
self.config.domains = domains |
|
|
|
self.corpus_base_path = Path(dl_manager.download_and_extract(URL)) |
|
|
|
splits = [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
|
|
gen_kwargs={ |
|
"csv_fn": self.corpus_base_path / "train.csv", |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.VALIDATION, |
|
|
|
gen_kwargs={ |
|
"csv_fn": self.corpus_base_path / "dev.csv", |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TEST, |
|
|
|
gen_kwargs={ |
|
"csv_fn": self.corpus_base_path / "test.csv", |
|
}, |
|
), |
|
] |
|
if self.config.full_dataset: |
|
splits = splits + [ |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
datasets.SplitGenerator( |
|
name="propbank", |
|
|
|
gen_kwargs={ |
|
"csv_fn": self.corpus_base_path / "propbank_comparison_data.csv", |
|
}, |
|
), |
|
] |
|
|
|
return splits |
|
|
|
def _generate_examples(self, csv_fn): |
|
df = pd.read_csv(csv_fn) |
|
for counter, row in df.iterrows(): |
|
yield counter, { |
|
"sentence": row['Input.sentence'], |
|
"sent_id": row['Input.qasrl_id'], |
|
"predicate_idx": row['Input.adj_index_start'], |
|
"predicate_idx_end": row['Input.adj_index_end'], |
|
"predicate": row['Input.target'], |
|
"object_question": self._get_optional_question(row.object_q), |
|
"object_answer": self._get_optional_answer(row["Answer.answer1"]), |
|
"domain_question": self._get_optional_question(row.domain_q), |
|
"domain_answer": self._get_optional_answer(row["Answer.answer3"]), |
|
"reference_question": self._get_optional_question(row.comparison_q), |
|
"reference_answer": self._get_optional_answer(row["Answer.answer2"]), |
|
"extent_question": self._get_optional_question(row.degree_q), |
|
"extent_answer": self._get_optional_answer(row["Answer.answer4"]), |
|
} |
|
|
|
def _get_optional_answer(self, val): |
|
if pd.isnull(val): |
|
return [] |
|
else: |
|
return val.split("+") |
|
def _get_optional_question(self, val): |
|
if pd.isnull(val): |
|
return "" |
|
else: |
|
return val |
|
|