blanchon commited on
Commit
462a1f2
1 Parent(s): 7b868f3

🤗 Add DatasetCard

Browse files
Files changed (1) hide show
  1. README.md +68 -0
README.md ADDED
@@ -0,0 +1,68 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language: en
3
+ license: unknown
4
+ task_categories:
5
+ - change-detection
6
+ pretty_name: ChaBuD MSI
7
+ tags:
8
+ - remote-sensing
9
+ - earth-observation
10
+ - geospatial
11
+ - satellite-imagery
12
+ - change-detection
13
+ - sentinel-2
14
+ ---
15
+
16
+ # ChaBuD MSI
17
+
18
+ <!-- Dataset thumbnail -->
19
+ ![ChaBuD MSI](./thumbnail.png)
20
+
21
+ <!-- Provide a quick summary of the dataset. -->
22
+ ChaBuD is a dataset for Change detection for Burned area Delineation and is used for the ChaBuD ECML-PKDD 2023 Discovery Challenge. This is the MSI version with 13 bands.
23
+ - **Paper:** https://doi.org/10.1016/j.rse.2021.112603
24
+ - **Homepage:** https://huggingface.co/spaces/competitions/ChaBuD-ECML-PKDD2023
25
+
26
+ ## Description
27
+
28
+ <!-- Provide a longer summary of what this dataset is. -->
29
+
30
+
31
+ - **Total Number of Images**: 356
32
+ - **Bands**: 13 (MSI)
33
+ - **Image Size**: 512x512
34
+ - **Image Resolution**: 10m
35
+ - **Land Cover Classes**: 2
36
+ - **Classes**: no change, burned area
37
+ - **Source**: Sentinel-2
38
+
39
+
40
+ ## Usage
41
+
42
+ To use this dataset, simply use `datasets.load_dataset("blanchon/ChaBuD_MSI")`.
43
+ <!-- Provide any additional information on how to use this dataset. -->
44
+ ```python
45
+ from datasets import load_dataset
46
+ ChaBuD_MSI = load_dataset("blanchon/ChaBuD_MSI")
47
+ ```
48
+
49
+ ## Citation
50
+
51
+ <!-- If there is a paper or blog post introducing the dataset, the APA and Bibtex information for that should go in this section. -->
52
+ If you use the ChaBuD_MSI dataset in your research, please consider citing the following publication:
53
+
54
+
55
+ ```bibtex
56
+ @article{TURKOGLU2021112603,
57
+ title = {Crop mapping from image time series: Deep learning with multi-scale label hierarchies},
58
+ journal = {Remote Sensing of Environment},
59
+ volume = {264},
60
+ pages = {112603},
61
+ year = {2021},
62
+ issn = {0034-4257},
63
+ doi = {https://doi.org/10.1016/j.rse.2021.112603},
64
+ url = {https://www.sciencedirect.com/science/article/pii/S0034425721003230},
65
+ author = {Mehmet Ozgur Turkoglu and Stefano D'Aronco and Gregor Perich and Frank Liebisch and Constantin Streit and Konrad Schindler and Jan Dirk Wegner},
66
+ keywords = {Deep learning, Recurrent neural network (RNN), Convolutional RNN, Hierarchical classification, Multi-stage, Crop classification, Multi-temporal, Time series},
67
+ }
68
+ ```