--- license: cc-by-4.0 --- # DeepLoc-2.0 Training Data Dataset from https://services.healthtech.dtu.dk/services/DeepLoc-2.0/ used to train the DeepLoc-2.0 model. ## Data preparation Data downloaded and processed using the following Python script: ```python import pandas as pd df = pd.read_csv('https://services.healthtech.dtu.dk/services/DeepLoc-2.0/data/Swissprot_Train_Validation_dataset.csv').drop(['Unnamed: 0', 'Partition'], axis=1) df['labels'] = df[['Cell membrane', 'Cytoplasm','Endoplasmic reticulum', 'Extracellular', 'Golgi apparatus', 'Lysosome/Vacuole', 'Mitochondrion', 'Nucleus', 'Peroxisome', 'Plastid']].astype('float32').values.tolist() df['Membrane'] = df['Membrane'].astype('float32') df = df[['Kingdom', 'ACC', 'Sequence','Membrane','labels']] train = df.sample(frac=0.8) df = df.drop(train.index) val = df.sample(frac=0.5) test = df.drop(val.index) train = train.reset_index(drop=True) val = val.reset_index(drop=True) test = test.reset_index(drop=True) train.to_parquet('deeploc-train.parquet', index=False) val.to_parquet('deploc-val.parquet', index=False) test.to_parquet('deeploc-test.parquet', index=False) ``` ## Labels {'Cell membrane': 0, 'Cytoplasm': 1, 'Endoplasmic reticulum': 2, 'Extracellular': 3, 'Golgi apparatus': 4, 'Lysosome/Vacuole': 5, 'Mitochondrion': 6, 'Nucleus': 7, 'Peroxisome': 8, 'Plastid': 9} ## Citation **DeepLoc-2.0:** ``` Vineet Thumuluri and others, DeepLoc 2.0: multi-label subcellular localization prediction using protein language models, Nucleic Acids Research, Volume 50, Issue W1, 5 July 2022, Pages W228–W234, https://doi.org/10.1093/nar/gkac278 ``` The DeepLoc data is a derivative of the UniProt dataset: **UniProt** ``` The UniProt Consortium UniProt: the Universal Protein Knowledgebase in 2023 Nucleic Acids Res. 51:D523–D531 (2023) ```