Datasets:

ArXiv:
License:
File size: 5,025 Bytes
c4aaaa2
9948645
40491dd
c4aaaa2
40491dd
c4aaaa2
 
40491dd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c4aaaa2
9948645
 
 
 
c4aaaa2
 
 
40491dd
9948645
 
 
 
c4aaaa2
 
 
 
9948645
 
 
 
 
 
 
 
 
 
 
 
c4aaaa2
 
40491dd
c4aaaa2
9948645
 
 
 
 
c4aaaa2
9948645
c4aaaa2
 
 
 
40491dd
 
 
 
 
 
 
 
 
9948645
40491dd
 
c4aaaa2
 
 
 
40491dd
 
 
 
 
9948645
40491dd
9948645
40491dd
 
9948645
 
 
 
 
 
 
40491dd
 
9948645
 
40491dd
 
 
9948645
 
 
 
 
 
 
 
 
40491dd
c4aaaa2
9948645
c4aaaa2
40491dd
c4aaaa2
9948645
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
import json
from functools import lru_cache

import datasets
import pandas as pd

SUPPORTED_LANGUAGES = [
    "sl",
    "ur",
    "sw",
    "uz",
    "vi",
    "sq",
    "ms",
    "km",
    "hy",
    "da",
    "ky",
    "mg",
    "mn",
    "ja",
    "el",
    "it",
    "is",
    "ru",
    "tl",
    "so",
    "pt",
    "uk",
    "sr",
    "sn",
    "ht",
    "bs",
    "my",
    "ar",
    "hr",
    "nl",
    "bn",
    "ne",
    "hi",
    "ka",
    "az",
    "ko",
    "id",
    "fr",
    "es",
    "en",
    "fa",
    "lo",
    "iw",
    "th",
    "tr",
    "zht",
    "zhs",
    "ti",
    "tg",
    "control",
]
SYSTEMS = ["openai"]
MODES = ["qlang", "qlang_en", "en", "rel_langs"]
# # get combination of systems and supported modes
# SUPPORTED_SOURCES = [f"{system}.{mode}" for system in SYSTEMS for mode in MODES]

ROOT_DIR = "data"


class BordIRlinesConfig(datasets.BuilderConfig):
    def __init__(self, language, n_hits=10, **kwargs):
        super(BordIRlinesConfig, self).__init__(**kwargs)
        self.language = language
        self.n_hits = n_hits
        self.data_root_dir = ROOT_DIR


@lru_cache
def load_json(path):
    with open(path, "r", encoding="utf-8") as f:
        return json.load(f)


@lru_cache
def replace_lang_str(path, lang):
    parent = path.rsplit("/", 2)[0]
    return f"{parent}/{lang}/{lang}_docs.json"


class BordIRLinesDataset(datasets.GeneratorBasedBuilder):
    VERSION = datasets.Version("1.0.0")

    BUILDER_CONFIGS = [
        BordIRlinesConfig(
            name=lang,
            language=lang,
            description=f"{lang.upper()} dataset",
        )
        for lang in SUPPORTED_LANGUAGES
    ]

    def _info(self):
        return datasets.DatasetInfo(
            description="IR Dataset for BordIRLines paper.",
            features=datasets.Features(
                {
                    "query_id": datasets.Value("string"),
                    "query": datasets.Value("string"),
                    "territory": datasets.Value("string"),
                    "rank": datasets.Value("int32"),
                    "score": datasets.Value("float32"),
                    "doc_id": datasets.Value("string"),
                    "doc_text": datasets.Value("string"),
                    "doc_lang": datasets.Value("string"),
                }
            ),
        )

    def _split_generators(self, dl_manager):
        base_url = self.config.data_root_dir
        downloaded_queries = dl_manager.download_and_extract(
            {
                "queries": f"{base_url}/queries.tsv",
            }
        )
        queries_df = pd.read_csv(downloaded_queries["queries"], sep="\t")

        lang = self.config.language

        splits = []
        downloaded_data = {}
        lang_docs = lang if lang != "control" else "en"

        for system in SYSTEMS:
            for mode in MODES:
                print("system", system, "mode", mode)
                source = f"{system}.{mode}"
                downloaded_data[source] = dl_manager.download_and_extract(
                    {
                        "docs": f"{base_url}/{lang_docs}/{lang_docs}_docs.json",
                        "hits": f"{base_url}/{lang}/{system}/{mode}/{lang}_query_hits.tsv",
                    }
                )

                split = datasets.SplitGenerator(
                    name=f"{system}.{mode}",
                    gen_kwargs={
                        "downloaded_data": downloaded_data[source],
                        "queries_df": queries_df,
                    },
                )
                splits.append(split)

        return splits

    def _generate_examples(self, downloaded_data, queries_df):
        n_hits = self.config.n_hits
        query_map = dict(zip(queries_df["query_id"], queries_df["query_text"]))
        counter = 0

        docs_path = downloaded_data["docs"]
        hits_path = downloaded_data["hits"]

        curr_lang = docs_path.split("/")[-1].split("_")[0]

        docs = load_json(docs_path)

        hits = pd.read_csv(hits_path, sep="\t")
        if n_hits:
            hits = hits.groupby("query_id").head(n_hits)
        for _, row in hits.iterrows():
            doc_id = row["doc_id"]
            if row["doc_id"] not in docs and curr_lang != row["doc_lang"]:
                docs_path_local = replace_lang_str(docs_path, row["doc_lang"])
                docs_local = load_json(docs_path_local)
            else:
                docs_local = docs

            query_id = row["query_id"]
            query_text = query_map.get(query_id, "")
            yield (
                counter,
                {
                    "query_id": query_id,
                    "query": query_text,
                    "territory": row["territory"],
                    "rank": row["rank"],
                    "score": row["score"],
                    "doc_id": doc_id,
                    "doc_text": docs_local[doc_id],
                    "doc_lang": row["doc_lang"],
                },
            )

            counter += 1