Datasets:

ArXiv:
License:
manestay commited on
Commit
22152b8
·
1 Parent(s): b3a0adc

properly skip filters if not passed in, refactor logic

Browse files
Files changed (1) hide show
  1. bordirlines.py +49 -50
bordirlines.py CHANGED
@@ -60,8 +60,7 @@ SUPPORTED_LANGUAGES = [
60
  SYSTEMS = ["openai", "m3"]
61
  MODES = ["qlang", "qlang_en", "en", "rel_langs"]
62
  RELEVANCE_FILTERS = ["all", "relevant", "non-relevant"]
63
- # # get combination of systems and supported modes
64
- # SUPPORTED_SOURCES = [f"{system}.{mode}" for system in SYSTEMS for mode in MODES]
65
 
66
  ROOT_DIR = "data"
67
 
@@ -119,7 +118,8 @@ class BordIRLinesDataset(datasets.GeneratorBasedBuilder):
119
  self.relevance_filter = relevance_filter
120
  assert self.relevance_filter in RELEVANCE_FILTERS
121
  self.annotation_type = annotation_type
122
- self.llm_mode = llm_mode # Default to "fewshot"
 
123
  self.viewpoint_filter = viewpoint_filter # Filter for a specific viewpoint
124
 
125
  def _info(self):
@@ -136,10 +136,10 @@ class BordIRLinesDataset(datasets.GeneratorBasedBuilder):
136
  "doc_id": datasets.Value("string"),
137
  "doc_text": datasets.Value("string"),
138
  "doc_lang": datasets.Value("string"),
 
 
139
  "relevant_human": datasets.Value("bool"),
140
- "viewpoint": datasets.Value("string"),
141
- "relevant_llm_zeroshot": datasets.Value("bool"),
142
- "relevant_llm_fewshot": datasets.Value("bool"),
143
  }
144
  ),
145
  )
@@ -185,6 +185,38 @@ class BordIRLinesDataset(datasets.GeneratorBasedBuilder):
185
 
186
  return splits
187
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
188
  def _generate_examples(
189
  self, hits_path, docs_path, queries_path, human_annotations_path, llm_annotations_path
190
  ):
@@ -226,54 +258,21 @@ class BordIRLinesDataset(datasets.GeneratorBasedBuilder):
226
 
227
  # Get LLM Data
228
  llm_data = llm_map.get((query_id, doc_id), {})
229
- relevant_llm = (
230
- llm_data["relevant_fewshot"]
231
- if self.llm_mode == "fewshot"
232
- else llm_data["relevant_zeroshot"]
233
- )
234
- viewpoint_llm = (
235
- llm_data["territory_fewshot"]
236
- if self.llm_mode == "fewshot"
237
- else llm_data["territory_zeroshot"]
238
- )
239
-
240
  # Filtering logic based on viewpoint preference
241
  viewpoint_llm = viewpoint_llm.split(") ", 1)[-1] if not pd.isna(viewpoint_llm) else None
242
 
243
- viewpoint = get_label(viewpoint_human, viewpoint_llm, self.annotation_type)
244
- if viewpoint is None:
245
- continue
246
-
247
- if self.viewpoint_filter == "Non-controllers":
248
- controller = query_entry["Controller"]
249
- if controller == "Unknown":
250
- continue
251
- claimants = copy(query_entry["Claimants"])
252
- claimants.remove(controller)
253
- if not len(claimants) or viewpoint not in claimants:
254
- continue
255
- else:
256
- if self.viewpoint_filter == "Controller":
257
- controller = query_entry["Controller"]
258
- target_viewpoint = controller
259
- else:
260
- target_viewpoint = self.viewpoint_filter
261
-
262
- if target_viewpoint and viewpoint != target_viewpoint:
263
  continue
264
 
265
- # Filtering logic based on relevance preference
266
- relevant = get_label(relevant_human, relevant_llm, self.annotation_type)
267
- if self.relevance_filter == "relevant":
268
- if not relevant:
269
  continue
270
 
271
- elif self.relevance_filter == "non-relevant":
272
- if relevant:
273
- continue
274
-
275
- # If "all", do not filter anything
276
-
277
  yield (
278
  counter,
279
  {
@@ -286,10 +285,10 @@ class BordIRLinesDataset(datasets.GeneratorBasedBuilder):
286
  "doc_id": doc_id,
287
  "doc_text": docs[doc_lang][doc_id],
288
  "doc_lang": doc_lang,
 
 
289
  "relevant_human": relevant_human,
290
- "viewpoint": viewpoint,
291
- "relevant_llm_zeroshot": llm_data["relevant_zeroshot"],
292
- "relevant_llm_fewshot": llm_data["relevant_fewshot"],
293
  },
294
  )
295
  counter += 1
 
60
  SYSTEMS = ["openai", "m3"]
61
  MODES = ["qlang", "qlang_en", "en", "rel_langs"]
62
  RELEVANCE_FILTERS = ["all", "relevant", "non-relevant"]
63
+ LLM_MODES = ["zeroshot", "fewshot"]
 
64
 
65
  ROOT_DIR = "data"
66
 
 
118
  self.relevance_filter = relevance_filter
119
  assert self.relevance_filter in RELEVANCE_FILTERS
120
  self.annotation_type = annotation_type
121
+ self.llm_mode = llm_mode
122
+ assert self.llm_mode in LLM_MODES
123
  self.viewpoint_filter = viewpoint_filter # Filter for a specific viewpoint
124
 
125
  def _info(self):
 
136
  "doc_id": datasets.Value("string"),
137
  "doc_text": datasets.Value("string"),
138
  "doc_lang": datasets.Value("string"),
139
+ "viewpoint_human": datasets.Value("string"),
140
+ "viewpoint_llm": datasets.Value("string"),
141
  "relevant_human": datasets.Value("bool"),
142
+ "relevant_llm": datasets.Value("bool"),
 
 
143
  }
144
  ),
145
  )
 
185
 
186
  return splits
187
 
188
+ def _skip_viewpoint(self, viewpoint_human, viewpoint_llm, query_entry):
189
+ viewpoint = get_label(viewpoint_human, viewpoint_llm, self.annotation_type)
190
+ if viewpoint is None:
191
+ return True
192
+
193
+ if self.viewpoint_filter == "Non-controllers":
194
+ controller = query_entry["Controller"]
195
+ if controller == "Unknown":
196
+ return True
197
+
198
+ claimants = copy(query_entry["Claimants"])
199
+ claimants.remove(controller)
200
+ return (
201
+ not claimants or viewpoint not in claimants
202
+ ) # skip if not a non-controller viewpoint
203
+
204
+ # otherwise, handle the case where we want to filter for a specific viewpoint
205
+ target_viewpoint = (
206
+ query_entry["Controller"]
207
+ if self.viewpoint_filter == "Controller"
208
+ else self.viewpoint_filter
209
+ )
210
+
211
+ return target_viewpoint and viewpoint != target_viewpoint
212
+
213
+ def _skip_relevance(self, relevant_human, relevant_llm):
214
+ # Filtering logic based on relevance preference
215
+ relevant = get_label(relevant_human, relevant_llm, self.annotation_type)
216
+ target_relevant = {"relevant": True, "non-relevant": False}.get(self.relevance_filter, None)
217
+ return target_relevant is not None and relevant != target_relevant
218
+ # If "all", do not filter anything
219
+
220
  def _generate_examples(
221
  self, hits_path, docs_path, queries_path, human_annotations_path, llm_annotations_path
222
  ):
 
258
 
259
  # Get LLM Data
260
  llm_data = llm_map.get((query_id, doc_id), {})
261
+ relevant_llm = llm_data[f"relevant_{self.llm_mode}"]
262
+ viewpoint_llm = llm_data[f"territory_{self.llm_mode}"]
 
 
 
 
 
 
 
 
 
263
  # Filtering logic based on viewpoint preference
264
  viewpoint_llm = viewpoint_llm.split(") ", 1)[-1] if not pd.isna(viewpoint_llm) else None
265
 
266
+ if self.viewpoint_filter:
267
+ do_skip = self._skip_viewpoint(viewpoint_human, viewpoint_llm, query_entry)
268
+ if do_skip:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
269
  continue
270
 
271
+ if self.relevance_filter != "all":
272
+ do_skip = self._skip_relevance(relevant_human, relevant_llm)
273
+ if do_skip:
 
274
  continue
275
 
 
 
 
 
 
 
276
  yield (
277
  counter,
278
  {
 
285
  "doc_id": doc_id,
286
  "doc_text": docs[doc_lang][doc_id],
287
  "doc_lang": doc_lang,
288
+ "viewpoint_human": viewpoint_human,
289
+ "viewpoint_llm": viewpoint_llm,
290
  "relevant_human": relevant_human,
291
+ "relevant_llm": relevant_llm,
 
 
292
  },
293
  )
294
  counter += 1