properly skip filters if not passed in, refactor logic
Browse files- bordirlines.py +49 -50
bordirlines.py
CHANGED
@@ -60,8 +60,7 @@ SUPPORTED_LANGUAGES = [
|
|
60 |
SYSTEMS = ["openai", "m3"]
|
61 |
MODES = ["qlang", "qlang_en", "en", "rel_langs"]
|
62 |
RELEVANCE_FILTERS = ["all", "relevant", "non-relevant"]
|
63 |
-
|
64 |
-
# SUPPORTED_SOURCES = [f"{system}.{mode}" for system in SYSTEMS for mode in MODES]
|
65 |
|
66 |
ROOT_DIR = "data"
|
67 |
|
@@ -119,7 +118,8 @@ class BordIRLinesDataset(datasets.GeneratorBasedBuilder):
|
|
119 |
self.relevance_filter = relevance_filter
|
120 |
assert self.relevance_filter in RELEVANCE_FILTERS
|
121 |
self.annotation_type = annotation_type
|
122 |
-
self.llm_mode = llm_mode
|
|
|
123 |
self.viewpoint_filter = viewpoint_filter # Filter for a specific viewpoint
|
124 |
|
125 |
def _info(self):
|
@@ -136,10 +136,10 @@ class BordIRLinesDataset(datasets.GeneratorBasedBuilder):
|
|
136 |
"doc_id": datasets.Value("string"),
|
137 |
"doc_text": datasets.Value("string"),
|
138 |
"doc_lang": datasets.Value("string"),
|
|
|
|
|
139 |
"relevant_human": datasets.Value("bool"),
|
140 |
-
"
|
141 |
-
"relevant_llm_zeroshot": datasets.Value("bool"),
|
142 |
-
"relevant_llm_fewshot": datasets.Value("bool"),
|
143 |
}
|
144 |
),
|
145 |
)
|
@@ -185,6 +185,38 @@ class BordIRLinesDataset(datasets.GeneratorBasedBuilder):
|
|
185 |
|
186 |
return splits
|
187 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
188 |
def _generate_examples(
|
189 |
self, hits_path, docs_path, queries_path, human_annotations_path, llm_annotations_path
|
190 |
):
|
@@ -226,54 +258,21 @@ class BordIRLinesDataset(datasets.GeneratorBasedBuilder):
|
|
226 |
|
227 |
# Get LLM Data
|
228 |
llm_data = llm_map.get((query_id, doc_id), {})
|
229 |
-
relevant_llm =
|
230 |
-
|
231 |
-
if self.llm_mode == "fewshot"
|
232 |
-
else llm_data["relevant_zeroshot"]
|
233 |
-
)
|
234 |
-
viewpoint_llm = (
|
235 |
-
llm_data["territory_fewshot"]
|
236 |
-
if self.llm_mode == "fewshot"
|
237 |
-
else llm_data["territory_zeroshot"]
|
238 |
-
)
|
239 |
-
|
240 |
# Filtering logic based on viewpoint preference
|
241 |
viewpoint_llm = viewpoint_llm.split(") ", 1)[-1] if not pd.isna(viewpoint_llm) else None
|
242 |
|
243 |
-
|
244 |
-
|
245 |
-
|
246 |
-
|
247 |
-
if self.viewpoint_filter == "Non-controllers":
|
248 |
-
controller = query_entry["Controller"]
|
249 |
-
if controller == "Unknown":
|
250 |
-
continue
|
251 |
-
claimants = copy(query_entry["Claimants"])
|
252 |
-
claimants.remove(controller)
|
253 |
-
if not len(claimants) or viewpoint not in claimants:
|
254 |
-
continue
|
255 |
-
else:
|
256 |
-
if self.viewpoint_filter == "Controller":
|
257 |
-
controller = query_entry["Controller"]
|
258 |
-
target_viewpoint = controller
|
259 |
-
else:
|
260 |
-
target_viewpoint = self.viewpoint_filter
|
261 |
-
|
262 |
-
if target_viewpoint and viewpoint != target_viewpoint:
|
263 |
continue
|
264 |
|
265 |
-
|
266 |
-
|
267 |
-
|
268 |
-
if not relevant:
|
269 |
continue
|
270 |
|
271 |
-
elif self.relevance_filter == "non-relevant":
|
272 |
-
if relevant:
|
273 |
-
continue
|
274 |
-
|
275 |
-
# If "all", do not filter anything
|
276 |
-
|
277 |
yield (
|
278 |
counter,
|
279 |
{
|
@@ -286,10 +285,10 @@ class BordIRLinesDataset(datasets.GeneratorBasedBuilder):
|
|
286 |
"doc_id": doc_id,
|
287 |
"doc_text": docs[doc_lang][doc_id],
|
288 |
"doc_lang": doc_lang,
|
|
|
|
|
289 |
"relevant_human": relevant_human,
|
290 |
-
"
|
291 |
-
"relevant_llm_zeroshot": llm_data["relevant_zeroshot"],
|
292 |
-
"relevant_llm_fewshot": llm_data["relevant_fewshot"],
|
293 |
},
|
294 |
)
|
295 |
counter += 1
|
|
|
60 |
SYSTEMS = ["openai", "m3"]
|
61 |
MODES = ["qlang", "qlang_en", "en", "rel_langs"]
|
62 |
RELEVANCE_FILTERS = ["all", "relevant", "non-relevant"]
|
63 |
+
LLM_MODES = ["zeroshot", "fewshot"]
|
|
|
64 |
|
65 |
ROOT_DIR = "data"
|
66 |
|
|
|
118 |
self.relevance_filter = relevance_filter
|
119 |
assert self.relevance_filter in RELEVANCE_FILTERS
|
120 |
self.annotation_type = annotation_type
|
121 |
+
self.llm_mode = llm_mode
|
122 |
+
assert self.llm_mode in LLM_MODES
|
123 |
self.viewpoint_filter = viewpoint_filter # Filter for a specific viewpoint
|
124 |
|
125 |
def _info(self):
|
|
|
136 |
"doc_id": datasets.Value("string"),
|
137 |
"doc_text": datasets.Value("string"),
|
138 |
"doc_lang": datasets.Value("string"),
|
139 |
+
"viewpoint_human": datasets.Value("string"),
|
140 |
+
"viewpoint_llm": datasets.Value("string"),
|
141 |
"relevant_human": datasets.Value("bool"),
|
142 |
+
"relevant_llm": datasets.Value("bool"),
|
|
|
|
|
143 |
}
|
144 |
),
|
145 |
)
|
|
|
185 |
|
186 |
return splits
|
187 |
|
188 |
+
def _skip_viewpoint(self, viewpoint_human, viewpoint_llm, query_entry):
|
189 |
+
viewpoint = get_label(viewpoint_human, viewpoint_llm, self.annotation_type)
|
190 |
+
if viewpoint is None:
|
191 |
+
return True
|
192 |
+
|
193 |
+
if self.viewpoint_filter == "Non-controllers":
|
194 |
+
controller = query_entry["Controller"]
|
195 |
+
if controller == "Unknown":
|
196 |
+
return True
|
197 |
+
|
198 |
+
claimants = copy(query_entry["Claimants"])
|
199 |
+
claimants.remove(controller)
|
200 |
+
return (
|
201 |
+
not claimants or viewpoint not in claimants
|
202 |
+
) # skip if not a non-controller viewpoint
|
203 |
+
|
204 |
+
# otherwise, handle the case where we want to filter for a specific viewpoint
|
205 |
+
target_viewpoint = (
|
206 |
+
query_entry["Controller"]
|
207 |
+
if self.viewpoint_filter == "Controller"
|
208 |
+
else self.viewpoint_filter
|
209 |
+
)
|
210 |
+
|
211 |
+
return target_viewpoint and viewpoint != target_viewpoint
|
212 |
+
|
213 |
+
def _skip_relevance(self, relevant_human, relevant_llm):
|
214 |
+
# Filtering logic based on relevance preference
|
215 |
+
relevant = get_label(relevant_human, relevant_llm, self.annotation_type)
|
216 |
+
target_relevant = {"relevant": True, "non-relevant": False}.get(self.relevance_filter, None)
|
217 |
+
return target_relevant is not None and relevant != target_relevant
|
218 |
+
# If "all", do not filter anything
|
219 |
+
|
220 |
def _generate_examples(
|
221 |
self, hits_path, docs_path, queries_path, human_annotations_path, llm_annotations_path
|
222 |
):
|
|
|
258 |
|
259 |
# Get LLM Data
|
260 |
llm_data = llm_map.get((query_id, doc_id), {})
|
261 |
+
relevant_llm = llm_data[f"relevant_{self.llm_mode}"]
|
262 |
+
viewpoint_llm = llm_data[f"territory_{self.llm_mode}"]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
263 |
# Filtering logic based on viewpoint preference
|
264 |
viewpoint_llm = viewpoint_llm.split(") ", 1)[-1] if not pd.isna(viewpoint_llm) else None
|
265 |
|
266 |
+
if self.viewpoint_filter:
|
267 |
+
do_skip = self._skip_viewpoint(viewpoint_human, viewpoint_llm, query_entry)
|
268 |
+
if do_skip:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
269 |
continue
|
270 |
|
271 |
+
if self.relevance_filter != "all":
|
272 |
+
do_skip = self._skip_relevance(relevant_human, relevant_llm)
|
273 |
+
if do_skip:
|
|
|
274 |
continue
|
275 |
|
|
|
|
|
|
|
|
|
|
|
|
|
276 |
yield (
|
277 |
counter,
|
278 |
{
|
|
|
285 |
"doc_id": doc_id,
|
286 |
"doc_text": docs[doc_lang][doc_id],
|
287 |
"doc_lang": doc_lang,
|
288 |
+
"viewpoint_human": viewpoint_human,
|
289 |
+
"viewpoint_llm": viewpoint_llm,
|
290 |
"relevant_human": relevant_human,
|
291 |
+
"relevant_llm": relevant_llm,
|
|
|
|
|
292 |
},
|
293 |
)
|
294 |
counter += 1
|