Commit
·
7c21e35
1
Parent(s):
50aa0d8
Updated dataset loading to include anotations
Browse files- README.md +159 -122
- bordirlines.py +69 -1
README.md
CHANGED
@@ -1,65 +1,66 @@
|
|
1 |
---
|
2 |
language:
|
3 |
-
- en
|
4 |
-
- ar
|
5 |
-
- es
|
6 |
-
- fr
|
7 |
-
- ru
|
8 |
-
- hi
|
9 |
-
- ms
|
10 |
-
- sw
|
11 |
-
- az
|
12 |
-
- ko
|
13 |
-
- pt
|
14 |
-
- hy
|
15 |
-
- th
|
16 |
-
- uk
|
17 |
-
- ur
|
18 |
-
- sr
|
19 |
-
- iw
|
20 |
-
- ja
|
21 |
-
- hr
|
22 |
-
- tl
|
23 |
-
- ky
|
24 |
-
- vi
|
25 |
-
- fa
|
26 |
-
- tg
|
27 |
-
- mg
|
28 |
-
- nl
|
29 |
-
- ne
|
30 |
-
- uz
|
31 |
-
- my
|
32 |
-
- da
|
33 |
-
- dz
|
34 |
-
- id
|
35 |
-
- is
|
36 |
-
- tr
|
37 |
-
- lo
|
38 |
-
- sl
|
39 |
-
- so
|
40 |
-
- mn
|
41 |
-
- bn
|
42 |
-
- bs
|
43 |
-
- ht
|
44 |
-
- el
|
45 |
-
- it
|
46 |
-
- to
|
47 |
-
- ka
|
48 |
-
- sn
|
49 |
-
- sq
|
50 |
-
- zh
|
51 |
pretty_name: BordIRlines
|
52 |
multilinguality:
|
53 |
-
- multilingual
|
54 |
annotations_creators:
|
55 |
-
-
|
|
|
56 |
language_creators:
|
57 |
-
- found
|
58 |
source_datasets:
|
59 |
-
- manestay/borderlines
|
60 |
license: mit
|
61 |
task_categories:
|
62 |
-
- question-answering
|
63 |
arxiv: 2410.01171
|
64 |
---
|
65 |
|
@@ -74,85 +75,110 @@ Each `doc` is a passage from a Wikipedia article.
|
|
74 |
|
75 |
### Languages
|
76 |
|
77 |
-
The dataset includes docs and queries in the following
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
|
130 |
The **control** language is English, and contains the queries for all 251 territories. In contrast, **en** is only the 38 territories which have an English-speaking claimant.
|
131 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
132 |
## Systems
|
|
|
133 |
We have processed retrieval results for these IR systems:
|
134 |
-
|
135 |
-
|
|
|
136 |
|
137 |
## Modes
|
|
|
138 |
Considering a user query in language `l` on a territory `t`, there are 4 modes for the IR.
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
|
|
143 |
|
144 |
## Dataset Structure
|
145 |
|
146 |
### Data Fields
|
147 |
|
148 |
The dataset consists of the following fields:
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
|
|
|
|
|
|
|
|
|
|
|
156 |
|
157 |
### Download Structure
|
158 |
|
@@ -167,13 +193,17 @@ data/
|
|
167 |
...
|
168 |
all_docs.json
|
169 |
queries.tsv
|
|
|
|
|
170 |
```
|
171 |
|
172 |
-
|
173 |
-
|
174 |
-
|
|
|
|
|
175 |
|
176 |
-
Currently, there are 50 langs
|
177 |
|
178 |
## Example Usage
|
179 |
|
@@ -195,9 +225,16 @@ ds_oa_zhs2 = load_dataset("borderlines/bordirlines", "zhs", split="openai.qlang"
|
|
195 |
ds_m3_zhs1 = load_dataset("borderlines/bordirlines", "zhs", split="m3.en")
|
196 |
# load Dataset for Simplified Chinese, qlang mode, m3 embedding
|
197 |
ds_m3_zhs2 = load_dataset("borderlines/bordirlines", "zhs", split="m3.qlang")
|
|
|
|
|
|
|
|
|
|
|
|
|
198 |
```
|
199 |
|
200 |
## Citation
|
|
|
201 |
```
|
202 |
@misc{li2024bordirlines,
|
203 |
title={BordIRlines: A Dataset for Evaluating Cross-lingual Retrieval-Augmented Generation},
|
|
|
1 |
---
|
2 |
language:
|
3 |
+
- en
|
4 |
+
- ar
|
5 |
+
- es
|
6 |
+
- fr
|
7 |
+
- ru
|
8 |
+
- hi
|
9 |
+
- ms
|
10 |
+
- sw
|
11 |
+
- az
|
12 |
+
- ko
|
13 |
+
- pt
|
14 |
+
- hy
|
15 |
+
- th
|
16 |
+
- uk
|
17 |
+
- ur
|
18 |
+
- sr
|
19 |
+
- iw
|
20 |
+
- ja
|
21 |
+
- hr
|
22 |
+
- tl
|
23 |
+
- ky
|
24 |
+
- vi
|
25 |
+
- fa
|
26 |
+
- tg
|
27 |
+
- mg
|
28 |
+
- nl
|
29 |
+
- ne
|
30 |
+
- uz
|
31 |
+
- my
|
32 |
+
- da
|
33 |
+
- dz
|
34 |
+
- id
|
35 |
+
- is
|
36 |
+
- tr
|
37 |
+
- lo
|
38 |
+
- sl
|
39 |
+
- so
|
40 |
+
- mn
|
41 |
+
- bn
|
42 |
+
- bs
|
43 |
+
- ht
|
44 |
+
- el
|
45 |
+
- it
|
46 |
+
- to
|
47 |
+
- ka
|
48 |
+
- sn
|
49 |
+
- sq
|
50 |
+
- zh
|
51 |
pretty_name: BordIRlines
|
52 |
multilinguality:
|
53 |
+
- multilingual
|
54 |
annotations_creators:
|
55 |
+
- human
|
56 |
+
- machine-generated
|
57 |
language_creators:
|
58 |
+
- found
|
59 |
source_datasets:
|
60 |
+
- manestay/borderlines
|
61 |
license: mit
|
62 |
task_categories:
|
63 |
+
- question-answering
|
64 |
arxiv: 2410.01171
|
65 |
---
|
66 |
|
|
|
75 |
|
76 |
### Languages
|
77 |
|
78 |
+
The dataset includes docs and queries in the following **languages**:
|
79 |
+
|
80 |
+
- `en`: English
|
81 |
+
- `zht`: Traditional Chinese
|
82 |
+
- `ar`: Arabic
|
83 |
+
- `zhs`: Simplified Chinese
|
84 |
+
- `es`: Spanish
|
85 |
+
- `fr`: French
|
86 |
+
- `ru`: Russian
|
87 |
+
- `hi`: Hindi
|
88 |
+
- `ms`: Malay
|
89 |
+
- `sw`: Swahili
|
90 |
+
- `az`: Azerbaijani
|
91 |
+
- `ko`: Korean
|
92 |
+
- `pt`: Portuguese
|
93 |
+
- `hy`: Armenian
|
94 |
+
- `th`: Thai
|
95 |
+
- `uk`: Ukrainian
|
96 |
+
- `ur`: Urdu
|
97 |
+
- `sr`: Serbian
|
98 |
+
- `iw`: Hebrew
|
99 |
+
- `ja`: Japanese
|
100 |
+
- `hr`: Croatian
|
101 |
+
- `tl`: Tagalog
|
102 |
+
- `ky`: Kyrgyz
|
103 |
+
- `vi`: Vietnamese
|
104 |
+
- `fa`: Persian
|
105 |
+
- `tg`: Tajik
|
106 |
+
- `mg`: Malagasy
|
107 |
+
- `nl`: Dutch
|
108 |
+
- `ne`: Nepali
|
109 |
+
- `uz`: Uzbek
|
110 |
+
- `my`: Burmese
|
111 |
+
- `da`: Danish
|
112 |
+
- `dz`: Dzongkha
|
113 |
+
- `id`: Indonesian
|
114 |
+
- `is`: Icelandic
|
115 |
+
- `tr`: Turkish
|
116 |
+
- `lo`: Lao
|
117 |
+
- `sl`: Slovenian
|
118 |
+
- `so`: Somali
|
119 |
+
- `mn`: Mongolian
|
120 |
+
- `bn`: Bengali
|
121 |
+
- `bs`: Bosnian
|
122 |
+
- `ht`: Haitian Creole
|
123 |
+
- `el`: Greek
|
124 |
+
- `it`: Italian
|
125 |
+
- `to`: Tonga
|
126 |
+
- `ka`: Georgian
|
127 |
+
- `sn`: Shona
|
128 |
+
- `sq`: Albanian
|
129 |
+
- `control`: see below
|
130 |
|
131 |
The **control** language is English, and contains the queries for all 251 territories. In contrast, **en** is only the 38 territories which have an English-speaking claimant.
|
132 |
|
133 |
+
### Annotations
|
134 |
+
|
135 |
+
The dataset contains two types of relevance annotations:
|
136 |
+
|
137 |
+
1. **Human Annotations**:
|
138 |
+
|
139 |
+
- Provided by three annotators for a subset of query-document pairs.
|
140 |
+
- Relevance is determined by majority vote across annotators.
|
141 |
+
- Territories are listed per annotator, capturing individual perspectives.
|
142 |
+
|
143 |
+
2. **LLM Annotations**:
|
144 |
+
- Includes two modes:
|
145 |
+
- **Zero-shot**: Predictions without any task-specific examples.
|
146 |
+
- **Few-shot**: Predictions with a small number of task-specific examples.
|
147 |
+
- Default mode is **few-shot**.
|
148 |
+
|
149 |
## Systems
|
150 |
+
|
151 |
We have processed retrieval results for these IR systems:
|
152 |
+
|
153 |
+
- `openai`: OpenAI's model `text-embedding-3-large`, cosine similarity
|
154 |
+
- `m3`: M3-embedding ([link](https://huggingface.co/BAAI/bge-m3)) (Chen et al., 2024)
|
155 |
|
156 |
## Modes
|
157 |
+
|
158 |
Considering a user query in language `l` on a territory `t`, there are 4 modes for the IR.
|
159 |
+
|
160 |
+
- `qlang`: consider passages in `{l}`. This is monolingual IR (the default).
|
161 |
+
- `qlang_en`: consider passages in either `{l, en}`.
|
162 |
+
- `en`: consider passages in `{en}`.
|
163 |
+
- `rel_langs`: consider passages in all relevant languages to `t` + `en`, so `{l1, l2, ..., en}`. This is a set, so `en` will not be duplicated if it already is relevant.
|
164 |
|
165 |
## Dataset Structure
|
166 |
|
167 |
### Data Fields
|
168 |
|
169 |
The dataset consists of the following fields:
|
170 |
+
|
171 |
+
- `query_id (string)`: The id of the query.
|
172 |
+
- `query (string)`: The query text as provided by the `queries.tsv` file.
|
173 |
+
- `territory (string)`: The territory of the query hit.
|
174 |
+
- `rank (int32)`: The rank of the document for the corresponding query.
|
175 |
+
- `score (float32)`: The relevance score of the document as provided by the search engine or model.
|
176 |
+
- `doc_id (string)`: The unique identifier of the article.
|
177 |
+
- `doc_text (string)`: The full text of the corresponding article or document.
|
178 |
+
- `relevant_human (bool)`: Majority relevance determined by human annotators.
|
179 |
+
- `territory_human (list[string])`: Territories as judged by human annotators.
|
180 |
+
- `relevant_llm_zeroshot (bool)`: LLM zero-shot relevance prediction.
|
181 |
+
- `relevant_llm_fewshot (bool)`: LLM few-shot relevance prediction.
|
182 |
|
183 |
### Download Structure
|
184 |
|
|
|
193 |
...
|
194 |
all_docs.json
|
195 |
queries.tsv
|
196 |
+
human_annotations.tsv
|
197 |
+
llm_annotations.tsv
|
198 |
```
|
199 |
|
200 |
+
- `queries.tsv`: Contains the list of query IDs and their associated query texts.
|
201 |
+
- `all_docs.json`: JSON dict containing all docs. It is organized as a nested dict, with keys `lang`, and values another dict with keys `doc_id`, and values `doc_text`.
|
202 |
+
- `{lang}\_query_hits.tsv`: A TSV file with relevance scores and hit ranks for queries.
|
203 |
+
- `human_annotations.tsv`: A TSV file with human relevance annotations.
|
204 |
+
- `llm_annotations.tsv`: A TSV file with LLM relevance predictions.
|
205 |
|
206 |
+
Currently, there are 50 langs _ 1 system _ 4 modes = 200 query hit TSV files.
|
207 |
|
208 |
## Example Usage
|
209 |
|
|
|
225 |
ds_m3_zhs1 = load_dataset("borderlines/bordirlines", "zhs", split="m3.en")
|
226 |
# load Dataset for Simplified Chinese, qlang mode, m3 embedding
|
227 |
ds_m3_zhs2 = load_dataset("borderlines/bordirlines", "zhs", split="m3.qlang")
|
228 |
+
|
229 |
+
# Load Dataset for English, relevant-only with human annotations
|
230 |
+
ds_human_en = load_dataset("borderlines/bordirlines", "en", relevant_only=True, annotation_type="human")
|
231 |
+
|
232 |
+
# Load Dataset for Simplified Chinese, few-shot LLM mode
|
233 |
+
ds_llm_fewshot_zhs = load_dataset("borderlines/bordirlines", "zhs", relevant_only=True, annotation_type="llm", llm_mode="fewshot")
|
234 |
```
|
235 |
|
236 |
## Citation
|
237 |
+
|
238 |
```
|
239 |
@misc{li2024bordirlines,
|
240 |
title={BordIRlines: A Dataset for Evaluating Cross-lingual Retrieval-Augmented Generation},
|
bordirlines.py
CHANGED
@@ -95,6 +95,12 @@ class BordIRLinesDataset(datasets.GeneratorBasedBuilder):
|
|
95 |
for lang in SUPPORTED_LANGUAGES
|
96 |
]
|
97 |
|
|
|
|
|
|
|
|
|
|
|
|
|
98 |
def _info(self):
|
99 |
return datasets.DatasetInfo(
|
100 |
description="IR Dataset for BordIRLines paper.",
|
@@ -109,6 +115,10 @@ class BordIRLinesDataset(datasets.GeneratorBasedBuilder):
|
|
109 |
"doc_id": datasets.Value("string"),
|
110 |
"doc_text": datasets.Value("string"),
|
111 |
"doc_lang": datasets.Value("string"),
|
|
|
|
|
|
|
|
|
112 |
}
|
113 |
),
|
114 |
)
|
@@ -117,6 +127,8 @@ class BordIRLinesDataset(datasets.GeneratorBasedBuilder):
|
|
117 |
base_url = self.config.data_root_dir
|
118 |
queries_path = f"{base_url}/queries.tsv"
|
119 |
docs_path = dl_manager.download_and_extract(f"{base_url}/all_docs.json")
|
|
|
|
|
120 |
|
121 |
lang = self.config.language
|
122 |
|
@@ -131,6 +143,8 @@ class BordIRLinesDataset(datasets.GeneratorBasedBuilder):
|
|
131 |
"hits": f"{base_url}/{lang}/{system}/{mode}/{lang}_query_hits.tsv",
|
132 |
"docs": docs_path,
|
133 |
"queries": queries_path,
|
|
|
|
|
134 |
}
|
135 |
)
|
136 |
|
@@ -140,13 +154,15 @@ class BordIRLinesDataset(datasets.GeneratorBasedBuilder):
|
|
140 |
"hits_path": downloaded_data[source]["hits"],
|
141 |
"docs_path": downloaded_data[source]["docs"],
|
142 |
"queries_path": downloaded_data[source]["queries"],
|
|
|
|
|
143 |
},
|
144 |
)
|
145 |
splits.append(split)
|
146 |
|
147 |
return splits
|
148 |
|
149 |
-
def _generate_examples(self, hits_path, docs_path, queries_path):
|
150 |
n_hits = self.config.n_hits
|
151 |
queries_df = pd.read_csv(queries_path, sep="\t")
|
152 |
query_map = dict(zip(queries_df["query_id"], queries_df["query_text"]))
|
@@ -156,6 +172,9 @@ class BordIRLinesDataset(datasets.GeneratorBasedBuilder):
|
|
156 |
docs = load_json(docs_path)
|
157 |
|
158 |
hits = pd.read_csv(hits_path, sep="\t")
|
|
|
|
|
|
|
159 |
if n_hits:
|
160 |
hits = hits.groupby("query_id").head(n_hits)
|
161 |
|
@@ -164,12 +183,57 @@ class BordIRLinesDataset(datasets.GeneratorBasedBuilder):
|
|
164 |
hits = hits.sort_values(by=["query_id_int", "rank"])
|
165 |
hits = hits.drop(columns=["query_id_int"])
|
166 |
|
|
|
|
|
|
|
167 |
for _, row in hits.iterrows():
|
168 |
doc_id = row["doc_id"]
|
169 |
doc_lang = row["doc_lang"]
|
170 |
query_id = row["query_id"]
|
171 |
query_text = query_map[query_id]
|
172 |
query_lang = query_to_lang_map[query_id]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
173 |
yield (
|
174 |
counter,
|
175 |
{
|
@@ -182,6 +246,10 @@ class BordIRLinesDataset(datasets.GeneratorBasedBuilder):
|
|
182 |
"doc_id": doc_id,
|
183 |
"doc_text": docs[doc_lang][doc_id],
|
184 |
"doc_lang": doc_lang,
|
|
|
|
|
|
|
|
|
185 |
},
|
186 |
)
|
187 |
|
|
|
95 |
for lang in SUPPORTED_LANGUAGES
|
96 |
]
|
97 |
|
98 |
+
def __init__(self, *args, relevant_only=False, annotation_type=None, llm_mode="fewshot", **kwargs):
|
99 |
+
super().__init__(*args, **kwargs)
|
100 |
+
self.relevant_only = relevant_only
|
101 |
+
self.annotation_type = annotation_type
|
102 |
+
self.llm_mode = llm_mode # Choose between "zeroshot" and "fewshot". Default: "fewshot".
|
103 |
+
|
104 |
def _info(self):
|
105 |
return datasets.DatasetInfo(
|
106 |
description="IR Dataset for BordIRLines paper.",
|
|
|
115 |
"doc_id": datasets.Value("string"),
|
116 |
"doc_text": datasets.Value("string"),
|
117 |
"doc_lang": datasets.Value("string"),
|
118 |
+
"relevant_human": datasets.Value("bool"),
|
119 |
+
"territory_human": datasets.Sequence(datasets.Value("string")),
|
120 |
+
"relevant_llm_zeroshot": datasets.Value("bool"),
|
121 |
+
"relevant_llm_fewshot": datasets.Value("bool"),
|
122 |
}
|
123 |
),
|
124 |
)
|
|
|
127 |
base_url = self.config.data_root_dir
|
128 |
queries_path = f"{base_url}/queries.tsv"
|
129 |
docs_path = dl_manager.download_and_extract(f"{base_url}/all_docs.json")
|
130 |
+
human_annotations_path = dl_manager.download_and_extract(f"{base_url}/human_annotations.tsv")
|
131 |
+
llm_annotations_path = dl_manager.download_and_extract(f"{base_url}/llm_annotations.tsv")
|
132 |
|
133 |
lang = self.config.language
|
134 |
|
|
|
143 |
"hits": f"{base_url}/{lang}/{system}/{mode}/{lang}_query_hits.tsv",
|
144 |
"docs": docs_path,
|
145 |
"queries": queries_path,
|
146 |
+
"human_annotations": human_annotations_path,
|
147 |
+
"llm_annotations": llm_annotations_path,
|
148 |
}
|
149 |
)
|
150 |
|
|
|
154 |
"hits_path": downloaded_data[source]["hits"],
|
155 |
"docs_path": downloaded_data[source]["docs"],
|
156 |
"queries_path": downloaded_data[source]["queries"],
|
157 |
+
"human_annotations_path": downloaded_data[source]["human_annotations"],
|
158 |
+
"llm_annotations_path": downloaded_data[source]["llm_annotations"],
|
159 |
},
|
160 |
)
|
161 |
splits.append(split)
|
162 |
|
163 |
return splits
|
164 |
|
165 |
+
def _generate_examples(self, hits_path, docs_path, queries_path, human_annotations_path, llm_annotations_path):
|
166 |
n_hits = self.config.n_hits
|
167 |
queries_df = pd.read_csv(queries_path, sep="\t")
|
168 |
query_map = dict(zip(queries_df["query_id"], queries_df["query_text"]))
|
|
|
172 |
docs = load_json(docs_path)
|
173 |
|
174 |
hits = pd.read_csv(hits_path, sep="\t")
|
175 |
+
human_annotations = pd.read_csv(human_annotations_path, sep="\t")
|
176 |
+
llm_annotations = pd.read_csv(llm_annotations_path, sep="\t")
|
177 |
+
|
178 |
if n_hits:
|
179 |
hits = hits.groupby("query_id").head(n_hits)
|
180 |
|
|
|
183 |
hits = hits.sort_values(by=["query_id_int", "rank"])
|
184 |
hits = hits.drop(columns=["query_id_int"])
|
185 |
|
186 |
+
human_map = human_annotations.set_index(["query_id", "doc_id"]).to_dict(orient="index")
|
187 |
+
llm_map = llm_annotations.set_index(["query_id", "doc_id"]).to_dict(orient="index")
|
188 |
+
|
189 |
for _, row in hits.iterrows():
|
190 |
doc_id = row["doc_id"]
|
191 |
doc_lang = row["doc_lang"]
|
192 |
query_id = row["query_id"]
|
193 |
query_text = query_map[query_id]
|
194 |
query_lang = query_to_lang_map[query_id]
|
195 |
+
|
196 |
+
# Get Human Data
|
197 |
+
human_data = human_map.get((query_id, doc_id), {})
|
198 |
+
# Parse relevant_human_votes manually
|
199 |
+
raw_votes = human_data.get("relevant_human", "[]")
|
200 |
+
relevant_human_votes = [
|
201 |
+
True if v.strip() == "True" else False if v.strip() == "False" else False
|
202 |
+
for v in raw_votes.strip("[]").split(",")
|
203 |
+
if v.strip()
|
204 |
+
]
|
205 |
+
|
206 |
+
# Parse territory_human manually
|
207 |
+
raw_territories = human_data.get("territory_human", "[]")
|
208 |
+
territory_human = [
|
209 |
+
v.strip().strip("'").strip('"') # Remove extra quotes and whitespace
|
210 |
+
for v in raw_territories.strip("[]").split(",")
|
211 |
+
if v.strip()
|
212 |
+
]
|
213 |
+
|
214 |
+
# Calculate majority relevance
|
215 |
+
majority_relevant_human = (
|
216 |
+
sum(relevant_human_votes) > len(relevant_human_votes) / 2 if relevant_human_votes else False
|
217 |
+
)
|
218 |
+
|
219 |
+
|
220 |
+
# Get LLM Data
|
221 |
+
llm_data = llm_map.get((query_id, doc_id), {})
|
222 |
+
relevant_llm = (
|
223 |
+
llm_data.get("relevant_fewshot", None)
|
224 |
+
if self.llm_mode == "fewshot"
|
225 |
+
else llm_data.get("relevant_zeroshot", None)
|
226 |
+
)
|
227 |
+
# Filtering logic
|
228 |
+
if self.relevant_only:
|
229 |
+
if self.annotation_type == "human" and not majority_relevant_human:
|
230 |
+
continue
|
231 |
+
elif self.annotation_type == "llm" and not (relevant_llm is True):
|
232 |
+
continue
|
233 |
+
elif not majority_relevant_human and not (relevant_llm is True):
|
234 |
+
continue
|
235 |
+
|
236 |
+
|
237 |
yield (
|
238 |
counter,
|
239 |
{
|
|
|
246 |
"doc_id": doc_id,
|
247 |
"doc_text": docs[doc_lang][doc_id],
|
248 |
"doc_lang": doc_lang,
|
249 |
+
"relevant_human": majority_relevant_human,
|
250 |
+
"territory_human": territory_human,
|
251 |
+
"relevant_llm_zeroshot": llm_data.get("relevant_zeroshot", None),
|
252 |
+
"relevant_llm_fewshot": llm_data.get("relevant_fewshot", None),
|
253 |
},
|
254 |
)
|
255 |
|