File size: 1,459 Bytes
2384ce6 f5b0c3c 2384ce6 f5b0c3c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 |
---
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
dataset_info:
features:
- name: record
dtype: string
- name: clean_para_index_set_pair
dtype: string
- name: src
dtype: string
- name: dst
dtype: string
- name: src_text
dtype: string
- name: dst_text
dtype: string
- name: src_rate
dtype: float64
- name: dst_rate
dtype: float64
splits:
- name: train
num_bytes: 8884444751
num_examples: 15331650
download_size: 2443622169
dataset_size: 8884444751
---
# 联合国数字图书馆的段落级中-英对齐平行语料
用我口胡的方法弄出来的平行语料,统计数据和拿argostranslate直接又跑了一份bleu score的结果已经丢论文里了,论文在写了在写了。应该拿这份去练机翻模型没问题,数据源是人写的。
bleu score 这里贴一份吧,懒得转格式了,我不太懂看,可能很差(
Language & Paragraph Count & Avg Tokens & bleu1 & bleu2 & bleu3 & bleu4 \\
\midrule
ar & 59754 & 52.71873 & 0.73799 & 0.58027 & 0.48118 & 0.40782 \\
de & 187 & 69.58824 & 0.62058 & 0.38837 & 0.26155 & 0.18271 \\
es & 66537 & 50.70776 & 0.74566 & 0.58545 & 0.48445 & 0.41073 \\
fr & 68765 & 52.13133 & 0.67895 & 0.49830 & 0.39453 & 0.32332 \\
ru & 65039 & 51.75020 & 0.71578 & 0.54827 & 0.44681 & 0.37495 \\
zh & 56276 & 53.16430 & 0.64737 & 0.45399 & 0.34408 & 0.27072 \\ |