File size: 1,459 Bytes
2384ce6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f5b0c3c
2384ce6
f5b0c3c
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
---
configs:
- config_name: default
  data_files:
  - split: train
    path: data/train-*
dataset_info:
  features:
  - name: record
    dtype: string
  - name: clean_para_index_set_pair
    dtype: string
  - name: src
    dtype: string
  - name: dst
    dtype: string
  - name: src_text
    dtype: string
  - name: dst_text
    dtype: string
  - name: src_rate
    dtype: float64
  - name: dst_rate
    dtype: float64
  splits:
  - name: train
    num_bytes: 8884444751
    num_examples: 15331650
  download_size: 2443622169
  dataset_size: 8884444751
---
# 联合国数字图书馆的段落级中-英对齐平行语料

用我口胡的方法弄出来的平行语料,统计数据和拿argostranslate直接又跑了一份bleu score的结果已经丢论文里了,论文在写了在写了。应该拿这份去练机翻模型没问题,数据源是人写的。

bleu score 这里贴一份吧,懒得转格式了,我不太懂看,可能很差(

    Language     & Paragraph Count & Avg Tokens & bleu1 & bleu2 & bleu3 & bleu4 \\
    \midrule
    ar & 59754 & 52.71873 & 0.73799 & 0.58027 & 0.48118 & 0.40782 \\
    de & 187 & 69.58824 & 0.62058 & 0.38837 & 0.26155 & 0.18271 \\
    es & 66537 & 50.70776 & 0.74566 & 0.58545 & 0.48445 & 0.41073 \\
    fr & 68765 & 52.13133 & 0.67895 & 0.49830 & 0.39453 & 0.32332 \\
    ru & 65039 & 51.75020 & 0.71578 & 0.54827 & 0.44681 & 0.37495 \\
    zh & 56276 & 53.16430 & 0.64737 & 0.45399 & 0.34408 & 0.27072 \\