bpiyush commited on
Commit
6943c9a
β€’
1 Parent(s): 3bc77e4

Upload README.md with huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +109 -24
README.md CHANGED
@@ -1,9 +1,35 @@
1
 
2
- # The Sound of Water: Inferring Physical Properties from Pouring Liquids
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3
 
4
  This dataset is associated with the paper "The Sound of Water: Inferring Physical Properties from Pouring Liquids".
5
 
6
- TODO: add citation and paper details.
 
 
 
 
 
 
 
 
 
 
 
7
 
8
  The dataset is stored in the following directory structure:
9
  ```sh
@@ -19,24 +45,29 @@ SoundOfWater/
19
  6 directories, 1 file
20
  ```
21
 
22
- ## Table of Contents
23
 
24
- - [The Sound of Water: Inferring Physical Properties from Pouring Liquids](#the-sound-of-water-inferring-physical-properties-from-pouring-liquids)
25
- - [Table of Contents](#table-of-contents)
26
- - [Dataset Overview](#dataset-overview)
27
- - [Video and audio samples](#video-and-audio-samples)
28
- - [Splits](#splits)
29
- - [Annotations](#annotations)
 
30
  - [Container measurements and other metadata](#container-measurements-and-other-metadata)
31
  - [Container bounding boxes](#container-bounding-boxes)
32
- - [YouTube samples](#youtube-samples)
33
- - [Citation](#citation)
 
 
34
 
 
35
 
36
- ## Dataset Overview
37
 
 
38
 
39
- ## Video and audio samples
40
 
41
  The video and audio samples are stored in the `./videos/` and `./audios/` directories, respectively.
42
  Note that we have trimmed the videos between the precise start and end of the pouring action.
@@ -44,7 +75,7 @@ If you need untrimmed videos, please contact us separately and we may be able to
44
 
45
  The metadata for each video is a row in "./annotations/localisation.csv".
46
 
47
- ## Splits
48
 
49
  We create four splits of the dataset.
50
  All of the splits can be found in the `./splits/` directory.
@@ -123,14 +154,40 @@ The splits are as follows:
123
 
124
  TODO: add test_III.txt file.
125
 
126
- ## Annotations
127
-
128
- The set of containers used is shown in this image:
129
-
130
- <figure>
131
- <img src="./assets/container_canvas.png" alt="Containers used in the dataset" style="width:70%">
132
- <figcaption>Containers used in the dataset</figcaption>
133
- </figure>
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
134
 
135
  #### Container measurements and other metadata
136
 
@@ -150,8 +207,36 @@ The bounding box annotations for containers are stored here: `./annotations/cont
150
  These are generated in a zero-shot manner using [LangSAM](https://github.com/luca-medeiros/lang-segment-anything).
151
 
152
 
153
- ## YouTube samples
154
 
155
  We also provide 4 samples searched from YouTube. These are used for qualitative evaluation.
156
 
157
- ## Citation
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
 
2
+ # <img src="./assets/pouring-water-logo5.png" alt="Logo" width="40"> The Sound of Water: Inferring Physical Properties from Pouring Liquids
3
+
4
+ <p align="center">
5
+ <a href="https://arxiv.org/abs/XXXXXX" target="_blank">
6
+ <img src="https://img.shields.io/badge/arXiv-Paper-red" alt="arXiv">
7
+ </a>
8
+ &nbsp;&nbsp;&nbsp;
9
+ <a target="_blank" href="https://colab.research.google.com/github/bpiyush/SoundOfWater/blob/main/playground.ipynb">
10
+ <img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"/>
11
+ </a>
12
+ &nbsp;&nbsp;&nbsp;
13
+ <a href="https://your_gradio_demo_link" target="_blank">
14
+ <img src="https://img.shields.io/badge/Gradio-Demo-orange" alt="Gradio">
15
+ </a>
16
+ </p>
17
+
18
 
19
  This dataset is associated with the paper "The Sound of Water: Inferring Physical Properties from Pouring Liquids".
20
 
21
+
22
+ <!-- Add a teaser image. -->
23
+ <p align="center">
24
+ <img src="./media_assets/pitch_on_spectrogram-compressed.gif" alt="Teaser" width="100%">
25
+ </p>
26
+
27
+ *Our key observations*: As water is poured, the fundamental frequency that we hear changes predictably over time as a function of physical properties (e.g., container dimensions).
28
+
29
+ **TL;DR**: We present a method to infer physical properties of liquids from *just* the sound of pouring. We show in theory how *pitch* can be used to derive various physical properties such as container height, flow rate, etc. Then, we train a pitch detection network (`wav2vec2`) using simulated and real data. The resulting model can predict the physical properties of pouring liquids with high accuracy. The latent representations learned also encode information about liquid mass and container shape.
30
+
31
+
32
+ ## ℹ️ About the dataset
33
 
34
  The dataset is stored in the following directory structure:
35
  ```sh
 
45
  6 directories, 1 file
46
  ```
47
 
48
+ ## πŸ“‘ Table of Contents
49
 
50
+ - [ The Sound of Water: Inferring Physical Properties from Pouring Liquids](#--the-sound-of-water-inferring-physical-properties-from-pouring-liquids)
51
+ - [ℹ️ About the dataset](#ℹ️-about-the-dataset)
52
+ - [πŸ“‘ Table of Contents](#-table-of-contents)
53
+ - [πŸ“š Dataset Overview](#-dataset-overview)
54
+ - [πŸŽ₯ Video and audio 🎧 samples](#-video-and-audio--samples)
55
+ - [πŸ—‚οΈ Splits](#️-splits)
56
+ - [πŸ“ Annotations](#-annotations)
57
  - [Container measurements and other metadata](#container-measurements-and-other-metadata)
58
  - [Container bounding boxes](#container-bounding-boxes)
59
+ - [🎬 YouTube samples](#-youtube-samples)
60
+ - [πŸ“œ Citation](#-citation)
61
+ - [πŸ™ Acknowledgements](#-acknowledgements)
62
+
63
 
64
+ ## πŸ“š Dataset Overview
65
 
66
+ We collect a dataset of 805 clean videos that show the action of pouring water in a container. Our dataset spans over 50 unique containers made of 5 different materials, 4 different shapes and with hot and cold water. Some example containers are shown below.
67
 
68
+ <img width="650" alt="image" src="./assets/containers-v2.png">
69
 
70
+ ## πŸŽ₯ Video and audio 🎧 samples
71
 
72
  The video and audio samples are stored in the `./videos/` and `./audios/` directories, respectively.
73
  Note that we have trimmed the videos between the precise start and end of the pouring action.
 
75
 
76
  The metadata for each video is a row in "./annotations/localisation.csv".
77
 
78
+ ## πŸ—‚οΈ Splits
79
 
80
  We create four splits of the dataset.
81
  All of the splits can be found in the `./splits/` directory.
 
154
 
155
  TODO: add test_III.txt file.
156
 
157
+ ## πŸ“ Annotations
158
+
159
+ An example row with metadata for a video looks like:
160
+ ```json
161
+ {
162
+ "video_id": "VID_20240116_230040",
163
+ "start_time": 2.057,
164
+ "end_time": 16.71059,
165
+ "setting": "ws-kitchen",
166
+ "bg-noise": "no",
167
+ "water_temperature": "normal",
168
+ "liquid": "water_normal",
169
+ "container_id": "container_1",
170
+ "flow_rate_appx": "constant",
171
+ "comment": null,
172
+ "clean": "yes",
173
+ "time_annotation_mode": "manual",
174
+ "shape": "cylindrical",
175
+ "material": "plastic",
176
+ "visibility": "transparent",
177
+ "example_video_id": "VID_20240116_230040",
178
+ "measurements": {
179
+ "diameter_bottom": 5.7,
180
+ "diameter_top": 6.3,
181
+ "net_height": 19.7,
182
+ "thickness": 0.32
183
+ },
184
+ "hyperparameters": {
185
+ "beta": 0.0
186
+ },
187
+ "physical_parameters": null,
188
+ "item_id": "VID_20240116_230040_2.1_16.7"
189
+ }
190
+ ```
191
 
192
  #### Container measurements and other metadata
193
 
 
207
  These are generated in a zero-shot manner using [LangSAM](https://github.com/luca-medeiros/lang-segment-anything).
208
 
209
 
210
+ ## 🎬 YouTube samples
211
 
212
  We also provide 4 samples searched from YouTube. These are used for qualitative evaluation.
213
 
214
+
215
+ <!-- Add a citation -->
216
+ ## πŸ“œ Citation
217
+
218
+ If you find this repository useful, please consider giving a star ⭐ and citation
219
+
220
+ ```bibtex
221
+ @article{sound_of_water_bagad,
222
+ title={The Sound of Water: Inferring Physical Properties from Pouring Liquids},
223
+ author={Bagad, Piyush and Tapaswi, Makarand and Snoek, Cees G. M. and Zisserman, Andrew},
224
+ journal={arXiv},
225
+ year={2024}
226
+ }
227
+ ```
228
+
229
+ <!-- Add acknowledgements, license, etc. here. -->
230
+ ## πŸ™ Acknowledgements
231
+
232
+ * We thank Ashish Thandavan for support with infrastructure and Sindhu
233
+ Hegde, Ragav Sachdeva, Jaesung Huh, Vladimir Iashin, Prajwal KR, and Aditya Singh for useful
234
+ discussions.
235
+ * This research is funded by EPSRC Programme Grant VisualAI EP/T028572/1, and a Royal Society Research Professorship RP / R1 / 191132.
236
+
237
+ We also want to highlight closely related work that could be of interest:
238
+
239
+ * [Analyzing Liquid Pouring Sequences via Audio-Visual Neural Networks](https://gamma.cs.unc.edu/PSNN/). IROS (2019).
240
+ * [Human sensitivity to acoustic information from vessel filling](https://psycnet.apa.org/record/2000-13210-019). Journal of Experimental Psychology (2020).
241
+ * [See the Glass Half Full: Reasoning About Liquid Containers, Their Volume and Content](https://arxiv.org/abs/1701.02718). ICCV (2017).
242
+ * [CREPE: A Convolutional Representation for Pitch Estimation](https://arxiv.org/abs/1802.06182). ICASSP (2018).