Datasets:

ArXiv:
License:
File size: 6,950 Bytes
871757f
 
 
66b9e17
 
 
 
 
 
 
 
 
 
 
871757f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d894f02
871757f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e9c1cc5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
871757f
 
d894f02
 
 
 
 
 
 
 
 
871757f
 
 
d894f02
 
 
 
 
871757f
 
 
d894f02
871757f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
---
pretty_name: 'Snow Mountain'
language:
  - hi
  - bgc
  - kfs
  - dgo
  - bhd
  - gbk
  - xnr
  - kfx
  - mjl
  - kfo
  - bfz
annotations_creators:
- ?
language_creators:
- ?
license: []
multilinguality:
- multilingual
size_categories:
- 
source_datasets:
- Snow Mountain
tags: []
task_categories:
- automatic-speech-recognition
task_ids: []
configs:
  - hi
  - bgc
dataset_info:
  - config_name: hi
    features:
      - name: Unnamed
        dtype: int64
      - name: sentence
        dtype: string
      - name: path
        dtype: string
    splits:
      - name: train_500
        num_examples: 400
      - name: val_500  
        num_examples: 100
      - name: train_1000
        num_examples: 800
      - name: val_1000
        num_examples: 200
      - name: test_common
        num_examples: 500
    dataset_size: 71.41 hrs
  - config_name: bgc
    features:
      - name: Unnamed
        dtype: int64
      - name: sentence
        dtype: string
      - name: path
        dtype: string
    splits:
      - name: train_500
        num_examples: 400
      - name: val_500  
        num_examples: 100
      - name: train_1000
        num_examples: 800
      - name: val_1000
        num_examples: 200
      - name: test_common
        num_examples: 500
    dataset_size: 27.41 hrs

---

# Dataset Card for [snow-mountain]

## Table of Contents
- [Table of Contents](#table-of-contents)
- [Dataset Description](#dataset-description)
  - [Dataset Summary](#dataset-summary)
  - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
  - [Languages](#languages)
- [Dataset Structure](#dataset-structure)
  - [Data Instances](#data-instances)
  - [Data Fields](#data-fields)
  - [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
  - [Curation Rationale](#curation-rationale)
  - [Source Data](#source-data)
  - [Annotations](#annotations)
  - [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
  - [Social Impact of Dataset](#social-impact-of-dataset)
  - [Discussion of Biases](#discussion-of-biases)
  - [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
  - [Dataset Curators](#dataset-curators)
  - [Licensing Information](#licensing-information)
  - [Citation Information](#citation-information)
  - [Contributions](#contributions)

## Dataset Description

- **Homepage:**
- **Repository:https://gitlabdev.bridgeconn.com/software/research/datasets/snow-mountain**
- **Paper:https://arxiv.org/abs/2206.01205**
- **Leaderboard:**
- **Point of Contact:**

### Dataset Summary

The Snow Mountain dataset contains the audio recordings (in .mp3 format) and the corresponding text of The Bible in 11 Indian languages. The recordings were done in a studio setting by native speakers. Each language has a single speaker in the dataset. Most of these languages are geographically concentrated in the Northern part of India around the state of Himachal Pradesh. Being related to Hindi they all use the Devanagari script for transcription. 

We have used this dataset for experiments in ASR tasks. But these could be used for other applications in speech domain, like speaker recognition, language identification or even as unlabelled corpus for pre-training.

### Supported Tasks and Leaderboards

Atomatic speech recognition, Speaker recognition, Language identification

### Languages

Hindi, Haryanvi, Bilaspuri, Dogri, Bhadrawahi, Gaddi, Kangri, Kulvi, Mandeali, Kulvi Outer Seraji, Pahari Mahasui 

## Dataset Structure
```
data
  |- cleaned
    |- lang1
      |- book1_verse_audios.tar.gz
      |- book2_verse_audios.tar.gz
        ...
        ...
      |- all_verses.csv
      |- short_verses.csv 
    |- lang2
      ...
      ...   
  |- experiments 
    |- lang1
      |- train_500.csv
      |- val_500.csv
      |- test_common.csv
        ...
        ...
    |- lang2
      ...
      ...
  |- raw
    |- lang1
      |- chapter1_audio.mp3
      |- chapter2_audio.mp3
        ...
        ...
      |- text
        |- book1.csv
        |- book1.usfm
          ...
          ...
    |- lang2
      ...
      ...
```
### Data Instances

A typical data point comprises the path to the audio file, usually called path and its transcription, called sentence. 

```
{'sentence': 'क्यूँके तू अपणी बात्तां कै कारण बेकसूर अर अपणी बात्तां ए कै कारण कसूरवार ठहराया जावैगा',
 'audio': {'path': 'data/cleaned/haryanvi/MAT/MAT_012_037.wav',
  'array': array([0., 0., 0., ..., 0., 0., 0.]),
  'sampling_rate': 16000},
 'path': 'data/cleaned/haryanvi/MAT/MAT_012_037.wav'}
```

### Data Fields

path: The path to the audio file

audio: A dictionary containing the path to the downloaded audio file, the decoded audio array, and the sampling rate. Note that when accessing the audio column: dataset[0]["audio"] the audio file is automatically decoded and resampled to dataset.features["audio"].sampling_rate. Decoding and resampling of a large number of audio files might take a significant amount of time. Thus it is important to first query the sample index before the "audio" column, i.e. dataset[0]["audio"] should always be preferred over dataset["audio"][0].

sentence: the transcription of the audio file.

### Data Splits

We create splits of the cleaned data for training and analysing the performance of ASR models. The splits are available in the `experiments` directory.  The file names indicate the experiment and the split category.

## Dataset Creation

### Curation Rationale

[More Information Needed]

### Source Data

The Bible recordings were done in a studio setting by native speakers. 

#### Initial Data Collection and Normalization

[More Information Needed]

#### Who are the source language producers?

[More Information Needed]

### Annotations

#### Annotation process

[More Information Needed]

#### Who are the annotators?

[More Information Needed]

### Personal and Sensitive Information

[More Information Needed]

## Considerations for Using the Data

### Social Impact of Dataset

[More Information Needed]

### Discussion of Biases

[More Information Needed]

### Other Known Limitations

[More Information Needed]

## Additional Information

### Dataset Curators

[More Information Needed]

### Licensing Information

The data is licensed under the Creative Commons Attribution-ShareAlike 4.0 International Public License (CC BY-SA 4.0)


### Citation Information

@inproceedings{Raju2022SnowMD,
  title={Snow Mountain: Dataset of Audio Recordings of The Bible in Low Resource Languages},
  author={Kavitha Raju and V. Anjaly and R. Allen Lish and Joel Mathew},
  year={2022}
}



### Contributions

Thanks to [@github-username](https://github.com/<github-username>) for adding this dataset.