Datasets:
ArXiv:
License:
File size: 6,950 Bytes
871757f 66b9e17 871757f d894f02 871757f e9c1cc5 871757f d894f02 871757f d894f02 871757f d894f02 871757f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 |
---
pretty_name: 'Snow Mountain'
language:
- hi
- bgc
- kfs
- dgo
- bhd
- gbk
- xnr
- kfx
- mjl
- kfo
- bfz
annotations_creators:
- ?
language_creators:
- ?
license: []
multilinguality:
- multilingual
size_categories:
-
source_datasets:
- Snow Mountain
tags: []
task_categories:
- automatic-speech-recognition
task_ids: []
configs:
- hi
- bgc
dataset_info:
- config_name: hi
features:
- name: Unnamed
dtype: int64
- name: sentence
dtype: string
- name: path
dtype: string
splits:
- name: train_500
num_examples: 400
- name: val_500
num_examples: 100
- name: train_1000
num_examples: 800
- name: val_1000
num_examples: 200
- name: test_common
num_examples: 500
dataset_size: 71.41 hrs
- config_name: bgc
features:
- name: Unnamed
dtype: int64
- name: sentence
dtype: string
- name: path
dtype: string
splits:
- name: train_500
num_examples: 400
- name: val_500
num_examples: 100
- name: train_1000
num_examples: 800
- name: val_1000
num_examples: 200
- name: test_common
num_examples: 500
dataset_size: 27.41 hrs
---
# Dataset Card for [snow-mountain]
## Table of Contents
- [Table of Contents](#table-of-contents)
- [Dataset Description](#dataset-description)
- [Dataset Summary](#dataset-summary)
- [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
- [Languages](#languages)
- [Dataset Structure](#dataset-structure)
- [Data Instances](#data-instances)
- [Data Fields](#data-fields)
- [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
- [Curation Rationale](#curation-rationale)
- [Source Data](#source-data)
- [Annotations](#annotations)
- [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
- [Social Impact of Dataset](#social-impact-of-dataset)
- [Discussion of Biases](#discussion-of-biases)
- [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
- [Dataset Curators](#dataset-curators)
- [Licensing Information](#licensing-information)
- [Citation Information](#citation-information)
- [Contributions](#contributions)
## Dataset Description
- **Homepage:**
- **Repository:https://gitlabdev.bridgeconn.com/software/research/datasets/snow-mountain**
- **Paper:https://arxiv.org/abs/2206.01205**
- **Leaderboard:**
- **Point of Contact:**
### Dataset Summary
The Snow Mountain dataset contains the audio recordings (in .mp3 format) and the corresponding text of The Bible in 11 Indian languages. The recordings were done in a studio setting by native speakers. Each language has a single speaker in the dataset. Most of these languages are geographically concentrated in the Northern part of India around the state of Himachal Pradesh. Being related to Hindi they all use the Devanagari script for transcription.
We have used this dataset for experiments in ASR tasks. But these could be used for other applications in speech domain, like speaker recognition, language identification or even as unlabelled corpus for pre-training.
### Supported Tasks and Leaderboards
Atomatic speech recognition, Speaker recognition, Language identification
### Languages
Hindi, Haryanvi, Bilaspuri, Dogri, Bhadrawahi, Gaddi, Kangri, Kulvi, Mandeali, Kulvi Outer Seraji, Pahari Mahasui
## Dataset Structure
```
data
|- cleaned
|- lang1
|- book1_verse_audios.tar.gz
|- book2_verse_audios.tar.gz
...
...
|- all_verses.csv
|- short_verses.csv
|- lang2
...
...
|- experiments
|- lang1
|- train_500.csv
|- val_500.csv
|- test_common.csv
...
...
|- lang2
...
...
|- raw
|- lang1
|- chapter1_audio.mp3
|- chapter2_audio.mp3
...
...
|- text
|- book1.csv
|- book1.usfm
...
...
|- lang2
...
...
```
### Data Instances
A typical data point comprises the path to the audio file, usually called path and its transcription, called sentence.
```
{'sentence': 'क्यूँके तू अपणी बात्तां कै कारण बेकसूर अर अपणी बात्तां ए कै कारण कसूरवार ठहराया जावैगा',
'audio': {'path': 'data/cleaned/haryanvi/MAT/MAT_012_037.wav',
'array': array([0., 0., 0., ..., 0., 0., 0.]),
'sampling_rate': 16000},
'path': 'data/cleaned/haryanvi/MAT/MAT_012_037.wav'}
```
### Data Fields
path: The path to the audio file
audio: A dictionary containing the path to the downloaded audio file, the decoded audio array, and the sampling rate. Note that when accessing the audio column: dataset[0]["audio"] the audio file is automatically decoded and resampled to dataset.features["audio"].sampling_rate. Decoding and resampling of a large number of audio files might take a significant amount of time. Thus it is important to first query the sample index before the "audio" column, i.e. dataset[0]["audio"] should always be preferred over dataset["audio"][0].
sentence: the transcription of the audio file.
### Data Splits
We create splits of the cleaned data for training and analysing the performance of ASR models. The splits are available in the `experiments` directory. The file names indicate the experiment and the split category.
## Dataset Creation
### Curation Rationale
[More Information Needed]
### Source Data
The Bible recordings were done in a studio setting by native speakers.
#### Initial Data Collection and Normalization
[More Information Needed]
#### Who are the source language producers?
[More Information Needed]
### Annotations
#### Annotation process
[More Information Needed]
#### Who are the annotators?
[More Information Needed]
### Personal and Sensitive Information
[More Information Needed]
## Considerations for Using the Data
### Social Impact of Dataset
[More Information Needed]
### Discussion of Biases
[More Information Needed]
### Other Known Limitations
[More Information Needed]
## Additional Information
### Dataset Curators
[More Information Needed]
### Licensing Information
The data is licensed under the Creative Commons Attribution-ShareAlike 4.0 International Public License (CC BY-SA 4.0)
### Citation Information
@inproceedings{Raju2022SnowMD,
title={Snow Mountain: Dataset of Audio Recordings of The Bible in Low Resource Languages},
author={Kavitha Raju and V. Anjaly and R. Allen Lish and Joel Mathew},
year={2022}
}
### Contributions
Thanks to [@github-username](https://github.com/<github-username>) for adding this dataset.
|