Datasets:
ArXiv:
License:
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
# TODO: Address all TODOs and remove all explanatory comments | |
"""TODO: Add a description here.""" | |
import os | |
import csv | |
import json | |
import datasets | |
import pandas as pd | |
from scipy.io import wavfile | |
_CITATION = """\ | |
@inproceedings{Raju2022SnowMD, | |
title={Snow Mountain: Dataset of Audio Recordings of The Bible in Low Resource Languages}, | |
author={Kavitha Raju and V. Anjaly and R. Allen Lish and Joel Mathew}, | |
year={2022} | |
} | |
""" | |
_DESCRIPTION = """\ | |
The Snow Mountain dataset contains the audio recordings (in .mp3 format) and the corresponding text of The Bible | |
in 11 Indian languages. The recordings were done in a studio setting by native speakers. Each language has a single | |
speaker in the dataset. Most of these languages are geographically concentrated in the Northern part of India around | |
the state of Himachal Pradesh. Being related to Hindi they all use the Devanagari script for transcription. | |
""" | |
_HOMEPAGE = "https://gitlabdev.bridgeconn.com/software/research/datasets/snow-mountain" | |
_LICENSE = "" | |
_URL = "https://gitlabdev.bridgeconn.com/software/research/datasets/snow-mountain/" | |
_FILES = {} | |
_LANGUAGES = ['hindi', 'dogri', 'gaddi', 'bilaspuri', 'haryanvi', 'kulvi', 'kangri', 'bhadrawahi', | |
'mandeali', 'pahari_mahasui', 'kulvi_outer_seraji', 'malayalam', 'tamil', 'kannada', | |
'telugu'] | |
for lang in _LANGUAGES: | |
file_dic = { | |
"train_500": f"data/experiments/{lang}/train_500.csv", | |
"val_500": f"data/experiments/{lang}/val_500.csv", | |
"train_1000": f"data/experiments/{lang}/train_1000.csv", | |
"val_1000": f"data/experiments/{lang}/val_1000.csv", | |
"train_2500": f"data/experiments/{lang}/train_2500.csv", | |
"val_2500": f"data/experiments/{lang}/val_2500.csv", | |
"train_short": f"data/experiments/{lang}/train_short.csv", | |
"val_short": f"data/experiments/{lang}/val_short.csv", | |
"train_full": f"data/experiments/{lang}/train_full.csv", | |
"val_full": f"data/experiments/{lang}/val_full.csv", | |
"test_common": f"data/experiments/{lang}/test_common.csv", | |
"all_verses": f"data/cleaned/{lang}/all_verses.tar.gz", | |
"short_verses": f"data/cleaned/{lang}/short_verses.tar.gz", | |
} | |
_FILES[lang] = file_dic | |
NT_BOOKS = ['MAT', 'MRK', 'LUK', 'JHN', 'ACT', 'ROM', '1CO', '2CO', 'GAL', 'EPH', 'PHP', 'COL', '1TH', | |
'2TH', '1TI', '2TI', 'TIT', 'PHM', 'HEB', 'JAS', '1PE', '2PE', '1JN', '2JN', '3JN', 'JUD', 'REV'] | |
OT_BOOKS = ['GEN', 'EXO', 'LEV', 'NUM', 'DEU', 'JOS', 'JDG', 'RUT', '1SA', '2SA', '1KI', '2KI', '1CH', | |
'2CH', 'EZR', 'NEH', 'EST', 'JOB', 'PSA', 'PRO', 'ECC', 'SNG', 'ISA', 'JER', 'LAM', 'EZK', | |
'DAN', 'HOS', 'JOL', 'AMO', 'OBA', 'JON', 'MIC', 'NAM', 'HAB', 'ZEP', 'HAG', 'ZEC', 'MAL'] | |
BOOKS_DIC = {'hindi':OT_BOOKS, 'bhadrawahi':NT_BOOKS, 'bilaspuri':NT_BOOKS, 'dogri':NT_BOOKS, 'gaddi': | |
NT_BOOKS, 'haryanvi':NT_BOOKS, 'kangri':NT_BOOKS, 'kulvi':NT_BOOKS, 'kulvi_outer_seraji':NT_BOOKS | |
, 'mandeali':NT_BOOKS, 'pahari_mahasui':NT_BOOKS, 'malayalam':OT_BOOKS+NT_BOOKS, 'tamil': | |
OT_BOOKS+NT_BOOKS, 'kannada': OT_BOOKS+NT_BOOKS, 'telugu': OT_BOOKS+NT_BOOKS} | |
class Test(datasets.GeneratorBasedBuilder): | |
VERSION = datasets.Version("1.0.0") | |
BUILDER_CONFIGS = [] | |
for lang in _LANGUAGES: | |
text = lang.capitalize()+" data" | |
BUILDER_CONFIGS.append(datasets.BuilderConfig(name=f"{lang}", version=VERSION, description=text)) | |
DEFAULT_CONFIG_NAME = "hindi" | |
def _info(self): | |
features = datasets.Features( | |
{ | |
"sentence": datasets.Value("string"), | |
"audio": datasets.features.Audio(sampling_rate=16_000), | |
"path": datasets.Value("string"), | |
} | |
) | |
return datasets.DatasetInfo( | |
description=_DESCRIPTION, | |
features=features, | |
supervised_keys=("sentence", "path"), | |
homepage=_HOMEPAGE, | |
license=_LICENSE, | |
citation=_CITATION, | |
) | |
def _split_generators(self, dl_manager): | |
downloaded_files = dl_manager.download(_FILES[self.config.name]) | |
'''Downloads full audio here''' | |
audio_data = {} | |
for book in BOOKS_DIC[self.config.name]: | |
archive_url = f"data/cleaned/{self.config.name}/{book}.tar.gz" | |
archive_path = dl_manager.download(archive_url) | |
for path, file in dl_manager.iter_archive(archive_path): | |
audio_ = path.split('/')[-1] | |
if audio_ not in audio_data: | |
content = file.read() | |
audio_data[audio_] = content | |
data_size = ['500', '1000', '2500', 'short', 'full'] | |
splits = [] | |
for size in data_size: | |
splits.append( | |
datasets.SplitGenerator( | |
name=f"train_{size}", | |
gen_kwargs={ | |
"filepath": downloaded_files[f"train_{size}"], | |
"audio_data": audio_data, | |
"dl_manager":dl_manager, | |
}, | |
) | |
) | |
splits.append( | |
datasets.SplitGenerator( | |
name=f"val_{size}", | |
gen_kwargs={ | |
"filepath": downloaded_files[f"val_{size}"], | |
"audio_data": audio_data, | |
"dl_manager":dl_manager, | |
}, | |
) | |
) | |
splits.append( | |
datasets.SplitGenerator( | |
name="test_common", | |
gen_kwargs={ | |
"filepath": downloaded_files["test_common"], | |
"audio_data": audio_data, | |
"dl_manager":dl_manager, | |
}, | |
) | |
) | |
splits.append( | |
datasets.SplitGenerator( | |
name="all_verses", | |
gen_kwargs={ | |
"filepath": downloaded_files["all_verses"], | |
"audio_data": audio_data, | |
"dl_manager":dl_manager, | |
}, | |
) | |
) | |
splits.append( | |
datasets.SplitGenerator( | |
name="short_verses", | |
gen_kwargs={ | |
"filepath": downloaded_files["short_verses"], | |
"audio_data": audio_data, | |
"dl_manager":dl_manager, | |
}, | |
) | |
) | |
return splits | |
def _generate_examples(self, filepath, audio_data, dl_manager): | |
'''Function for parsing large csv archives (all_verses, short_verses)''' | |
def parse_archive(archive): | |
temp_df = pd.DataFrame() | |
for path, file in dl_manager.iter_archive(archive): | |
if path.endswith('_verses.csv'): | |
verses_filepath = file | |
verses_lines = file.readlines() | |
verses_lines = [line.decode("utf-8") for line in verses_lines] | |
column_names = verses_lines[0].strip().split(",") | |
rows = [row.split(',') for row in verses_lines[1:]] | |
rows = [[i[0], i[1], ','.join(i[2:])]for i in rows] | |
temp_df = pd.DataFrame(rows, columns =column_names) | |
break | |
return temp_df | |
if filepath.endswith('all_verses.tar.gz'): | |
data_df = parse_archive(filepath) | |
elif filepath.endswith('short_verses.tar.gz'): | |
data_df = parse_archive(filepath) | |
else: | |
with open(filepath) as f: | |
data_df = pd.read_csv(f,sep=',') | |
key = 0 | |
for index,row in data_df.iterrows(): | |
audio = row['path'].split('/')[-1] | |
content = '' | |
if audio in list(audio_data.keys()): | |
content = audio_data[audio] | |
else: | |
print(f"*********** Couldn't find audio: {audio} **************") | |
yield key, { | |
"sentence": row["sentence"], | |
"path": row["path"], | |
"audio":{"path": row["path"], "bytes": content} | |
} | |
key+=1 | |