Datasets:
ArXiv:
License:
error fix
Browse files- snow-mountain.py +19 -74
snow-mountain.py
CHANGED
@@ -97,92 +97,38 @@ class Test(datasets.GeneratorBasedBuilder):
|
|
97 |
downloaded_files = dl_manager.download(_FILES[self.config.name])
|
98 |
path_to_audios = "/".join(["data/cleaned", self.config.name])
|
99 |
|
100 |
-
|
101 |
-
datasets.SplitGenerator(
|
102 |
-
name="train_500",
|
103 |
-
gen_kwargs={
|
104 |
-
"filepath": downloaded_files["train_500"],
|
105 |
-
"dl_manager": dl_manager,
|
106 |
-
},
|
107 |
-
),
|
108 |
-
datasets.SplitGenerator(
|
109 |
-
name="train_1000",
|
110 |
-
gen_kwargs={
|
111 |
-
"filepath": downloaded_files["train_1000"],
|
112 |
-
"dl_manager": dl_manager,
|
113 |
-
},
|
114 |
-
),
|
115 |
-
datasets.SplitGenerator(
|
116 |
-
name="train_2500",
|
117 |
-
gen_kwargs={
|
118 |
-
"filepath": downloaded_files["train_2500"],
|
119 |
-
"dl_manager": dl_manager,
|
120 |
-
},
|
121 |
-
),
|
122 |
-
datasets.SplitGenerator(
|
123 |
-
name="train_short",
|
124 |
-
gen_kwargs={
|
125 |
-
"filepath": downloaded_files["train_short"],
|
126 |
-
"dl_manager": dl_manager,
|
127 |
-
},
|
128 |
-
),
|
129 |
-
datasets.SplitGenerator(
|
130 |
-
name="train_full",
|
131 |
-
gen_kwargs={
|
132 |
-
"filepath": downloaded_files["train_full"],
|
133 |
-
"dl_manager": dl_manager,
|
134 |
-
},
|
135 |
-
),
|
136 |
-
]
|
137 |
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
gen_kwargs={
|
142 |
-
"filepath": downloaded_files["val_500"],
|
143 |
-
"dl_manager": dl_manager,
|
144 |
-
},
|
145 |
-
),
|
146 |
-
datasets.SplitGenerator(
|
147 |
-
name="val_1000",
|
148 |
-
gen_kwargs={
|
149 |
-
"filepath": downloaded_files["val_1000"],
|
150 |
-
"dl_manager": dl_manager,
|
151 |
-
},
|
152 |
-
),
|
153 |
-
datasets.SplitGenerator(
|
154 |
-
name="val_2500",
|
155 |
-
gen_kwargs={
|
156 |
-
"filepath": downloaded_files["val_2500"],
|
157 |
-
"dl_manager": dl_manager,
|
158 |
-
},
|
159 |
-
),
|
160 |
datasets.SplitGenerator(
|
161 |
-
name="
|
162 |
gen_kwargs={
|
163 |
-
"filepath": downloaded_files["
|
164 |
"dl_manager": dl_manager,
|
165 |
},
|
166 |
-
)
|
|
|
|
|
167 |
datasets.SplitGenerator(
|
168 |
-
name="
|
169 |
gen_kwargs={
|
170 |
-
"filepath": downloaded_files["
|
171 |
"dl_manager": dl_manager,
|
172 |
},
|
173 |
-
)
|
174 |
-
|
175 |
-
|
176 |
-
test_splits = [
|
177 |
datasets.SplitGenerator(
|
178 |
name="test_common",
|
179 |
gen_kwargs={
|
180 |
"filepath": downloaded_files["test_common"],
|
181 |
"dl_manager": dl_manager,
|
182 |
},
|
183 |
-
)
|
184 |
-
|
185 |
-
return
|
186 |
|
187 |
|
188 |
def _generate_examples(self, filepath, dl_manager):
|
@@ -192,12 +138,11 @@ class Test(datasets.GeneratorBasedBuilder):
|
|
192 |
transcripts = []
|
193 |
for index,row in data_df.iterrows():
|
194 |
downloaded_audio = dl_manager.download(row["path"])
|
195 |
-
# samplerate, audio_data = wavfile.read(downloaded_audio)
|
196 |
with open(downloaded_audio, 'rb') as fd:
|
197 |
-
|
198 |
yield key, {
|
199 |
"sentence": row["sentence"],
|
200 |
"path": row["path"],
|
201 |
-
"audio":{"path": row["path"], "bytes":
|
202 |
}
|
203 |
key+=1
|
|
|
97 |
downloaded_files = dl_manager.download(_FILES[self.config.name])
|
98 |
path_to_audios = "/".join(["data/cleaned", self.config.name])
|
99 |
|
100 |
+
data_size = ['500', '1000', '2500', 'short', 'full']
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
101 |
|
102 |
+
splits = []
|
103 |
+
for size in data_size:
|
104 |
+
splits.append(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
105 |
datasets.SplitGenerator(
|
106 |
+
name=f"train_{size}",
|
107 |
gen_kwargs={
|
108 |
+
"filepath": downloaded_files[f"train_{size}"],
|
109 |
"dl_manager": dl_manager,
|
110 |
},
|
111 |
+
)
|
112 |
+
)
|
113 |
+
splits.append(
|
114 |
datasets.SplitGenerator(
|
115 |
+
name=f"val_{size}",
|
116 |
gen_kwargs={
|
117 |
+
"filepath": downloaded_files[f"val_{size}"],
|
118 |
"dl_manager": dl_manager,
|
119 |
},
|
120 |
+
)
|
121 |
+
)
|
122 |
+
splits.append(
|
|
|
123 |
datasets.SplitGenerator(
|
124 |
name="test_common",
|
125 |
gen_kwargs={
|
126 |
"filepath": downloaded_files["test_common"],
|
127 |
"dl_manager": dl_manager,
|
128 |
},
|
129 |
+
)
|
130 |
+
)
|
131 |
+
return splits
|
132 |
|
133 |
|
134 |
def _generate_examples(self, filepath, dl_manager):
|
|
|
138 |
transcripts = []
|
139 |
for index,row in data_df.iterrows():
|
140 |
downloaded_audio = dl_manager.download(row["path"])
|
|
|
141 |
with open(downloaded_audio, 'rb') as fd:
|
142 |
+
content = fd.read()
|
143 |
yield key, {
|
144 |
"sentence": row["sentence"],
|
145 |
"path": row["path"],
|
146 |
+
"audio":{"path": row["path"], "bytes": content}
|
147 |
}
|
148 |
key+=1
|