Datasets:

ArXiv:
License:
anjalyjayakrishnan commited on
Commit
d894f02
·
1 Parent(s): 9e12a64

updated dataset card

Browse files
Files changed (1) hide show
  1. README.md +27 -15
README.md CHANGED
@@ -1,17 +1,17 @@
1
  ---
2
  pretty_name: 'Snow Mountain'
3
  language:
4
- - hi
5
- - bgc
6
- - kfs
7
- - dgo
8
- - bhd
9
- - gbk
10
- - xnr
11
- - kfx
12
- - mjl
13
- - kfo
14
- - bfz
15
  annotations_creators:
16
  - ?
17
  language_creators:
@@ -74,7 +74,7 @@ dataset_info:
74
 
75
  ---
76
 
77
- # Dataset Card for [Dataset Name]
78
 
79
  ## Table of Contents
80
  - [Table of Contents](#table-of-contents)
@@ -127,15 +127,27 @@ Hindi, Haryanvi, Bilaspuri, Dogri, Bhadrawahi, Gaddi, Kangri, Kulvi, Mandeali, K
127
 
128
  ### Data Instances
129
 
130
- [More Information Needed]
 
 
 
 
 
 
 
 
131
 
132
  ### Data Fields
133
 
134
- [More Information Needed]
 
 
 
 
135
 
136
  ### Data Splits
137
 
138
- [More Information Needed]
139
 
140
  ## Dataset Creation
141
 
 
1
  ---
2
  pretty_name: 'Snow Mountain'
3
  language:
4
+ - hindi
5
+ - haryanvi
6
+ - dogri
7
+ - gaddi
8
+ - bilaspuri
9
+ - bhadrawahi
10
+ - kangri
11
+ - kulvi
12
+ - kulvi_outer_seraji
13
+ - pahari_mahasui
14
+ - mandeali
15
  annotations_creators:
16
  - ?
17
  language_creators:
 
74
 
75
  ---
76
 
77
+ # Dataset Card for [snow-mountain]
78
 
79
  ## Table of Contents
80
  - [Table of Contents](#table-of-contents)
 
127
 
128
  ### Data Instances
129
 
130
+ A typical data point comprises the path to the audio file, usually called path and its transcription, called sentence.
131
+
132
+ ```
133
+ {'sentence': 'क्यूँके तू अपणी बात्तां कै कारण बेकसूर अर अपणी बात्तां ए कै कारण कसूरवार ठहराया जावैगा',
134
+ 'audio': {'path': 'data/cleaned/haryanvi/MAT/MAT_012_037.wav',
135
+ 'array': array([0., 0., 0., ..., 0., 0., 0.]),
136
+ 'sampling_rate': 16000},
137
+ 'path': 'data/cleaned/haryanvi/MAT/MAT_012_037.wav'}
138
+ ```
139
 
140
  ### Data Fields
141
 
142
+ path: The path to the audio file
143
+
144
+ audio: A dictionary containing the path to the downloaded audio file, the decoded audio array, and the sampling rate. Note that when accessing the audio column: dataset[0]["audio"] the audio file is automatically decoded and resampled to dataset.features["audio"].sampling_rate. Decoding and resampling of a large number of audio files might take a significant amount of time. Thus it is important to first query the sample index before the "audio" column, i.e. dataset[0]["audio"] should always be preferred over dataset["audio"][0].
145
+
146
+ sentence: the transcription of the audio file.
147
 
148
  ### Data Splits
149
 
150
+ We create splits of the cleaned data for training and analysing the performance of ASR models. The splits are available in the `experiments` directory. The file names indicate the experiment and the split category.
151
 
152
  ## Dataset Creation
153