#!/usr/bin/env python3 import bz2 import json import xml.etree.cElementTree as etree import re import sqlite3 from urllib.parse import quote import mwparserfromhell import requests import os import coremltools as ct from transformers import AutoTokenizer import numpy as np from usearch.index import Index, Matches import multiprocessing from multiprocessing import Pool def download_wiki_dump(lang, date): """Download the Wikipedia dump file.""" local_filename = f"{lang}wiki-{date}-dump.xml.bz2" if os.path.isfile(local_filename): print(f"Using existing file: {local_filename}") return local_filename base_url = f"https://dumps.wikimedia.org/{lang}wiki/{date}/" dump_status_url = base_url + "dumpstatus.json" response = requests.get(dump_status_url) dump_info = json.loads(response.text) for filename, info in dump_info["jobs"]["articlesmultistreamdump"]["files"].items(): if filename.endswith(".xml.bz2"): file_url = base_url + filename break else: raise ValueError("Couldn't find the multistream dump file") with requests.get(file_url, stream=True) as r: r.raise_for_status() with open(local_filename, 'wb') as f: for chunk in r.iter_content(chunk_size=8192): f.write(chunk) return local_filename def parse_and_clean_wikicode(raw_content, parser, lang): """Strips formatting and unwanted sections from raw page content.""" wikicode = parser.parse(raw_content) # Filters for magic words that are parser instructions -- e.g., __NOTOC__ re_rm_magic = re.compile("__[A-Z]*__", flags=re.UNICODE) # Filters for file/image links. media_prefixes = "|".join(["File", "Image", "Media"]) # + MEDIA_ALIASES.get(lang, [])) re_rm_wikilink = re.compile(f"^(?:{media_prefixes}):", flags=re.IGNORECASE | re.UNICODE) def rm_wikilink(obj): return bool(re_rm_wikilink.match(str(obj.title))) # Filters for references and tables def rm_tag(obj): return str(obj.tag) in {"ref", "table"} # Leave category links in-place but remove the category prefixes cat_prefixes = "|".join(["Category"]) # + CAT_ALIASES.get(language, [])) re_clean_wikilink = re.compile(f"^(?:{cat_prefixes}):", flags=re.IGNORECASE | re.UNICODE) def is_category(obj): return bool(re_clean_wikilink.match(str(obj.title))) def clean_wikilink(obj): text = obj.__strip__() text = re.sub(re_clean_wikilink, "", text) obj.text = text def try_replace_obj(obj): try: clean_wikilink(obj) except ValueError: # For unknown reasons, objects are sometimes not found. pass def try_remove_obj(obj, section): try: section.remove(obj) except ValueError: # For unknown reasons, objects are sometimes not found. pass sections = [] # Filter individual sections to clean. for section in wikicode.get_sections(flat=True, include_lead=True, include_headings=True): heading = section.filter_headings()[0].title.strip() if section.filter_headings() else "Lead" for obj in section.ifilter_wikilinks(recursive=True): if rm_wikilink(obj): try_remove_obj(obj, section) elif is_category(obj): try_replace_obj(obj) for obj in section.ifilter_tags(matches=rm_tag, recursive=True): try_remove_obj(obj, section) section_text = re.sub(re_rm_magic, "", section.strip_code().strip()) if section_text.startswith(f"{heading}\n"): section_text = section_text[len(heading):].strip() sections.append((heading, section_text)) return sections def construct_url(title, lang): return f"https://{lang}.wikipedia.org/wiki/{quote(title)}" def process_wiki_dump(filepath, lang): """Process the Wikipedia dump and yield cleaned articles.""" total_pages = 0 main_namespace_pages = 0 articles_with_content = 0 redirects = 0 total_sections = 0 try: with bz2.BZ2File(filepath) as f: context = etree.iterparse(f, events=("end",)) for _, elem in context: if not elem.tag.endswith("page"): continue total_pages += 1 namespace = elem.tag[:-4] title = elem.find(f"./{namespace}title").text ns = elem.find(f"./{namespace}ns").text id_ = elem.find(f"./{namespace}id").text if ns != "0": # Skip non-main namespace elem.clear() continue main_namespace_pages += 1 red_ = elem.find(f"./{namespace}redirect") if red_ is not None: redirects += 1 elem.clear() continue raw_content = elem.find(f"./{namespace}revision/{namespace}text").text elem.clear() if raw_content is None or raw_content.strip() == "": continue articles_with_content += 1 try: sections = parse_and_clean_wikicode(raw_content, parser=mwparserfromhell, lang=lang) except (mwparserfromhell.parser.ParserError) as e: print(f"💥 mwparserfromhell ParseError: {e}") return # if not text or text.strip() == "": # return if not sections or len(sections) == 0: return sections = [(heading, text.strip()) for heading, text in sections if len(text.strip()) > 1 and heading != "References" and heading != text.strip()] total_sections += len(sections) url = construct_url(title, lang) yield { "article_id": id_, "url": url, "title": title, "sections": sections } elem.clear() if articles_with_content % 1000 == 0: print(f"Processed article {articles_with_content}: {title} {id_}") finally: print(f"Total pages processed: {total_pages}") print(f"Pages in main namespace: {main_namespace_pages}") print(f"Redirects skipped: {redirects}") print(f"Articles with content: {articles_with_content}") def tokenize(text): return tokenizer( text, add_special_tokens=True, max_length=512, padding='max_length', truncation=True, return_attention_mask=True, return_tensors='np' ) def tokenize_for_chunking(text): res = tokenizer( text, add_special_tokens=True, padding='do_not_pad', truncation=False, return_tensors='np' ) return res['input_ids'].flatten() def embed(text): result = tokenize(text) token_ids = result['input_ids'].astype(np.float32) mask = result['attention_mask'].astype(np.float32) # print(f"Tokens: {token_ids}") # print(f"Mask: {mask}") predictions = model.predict({"input_ids": token_ids, "attention_mask": mask}) return predictions['embeddings'][0] def build_section_header(section_name, article_title): return f"Page: {article_title}\nSection: {section_name}\n\n" def lazypack_chunk4(text, seps=["\n\n", ".\n", "?\n", "\n", ". ", "? ", " "], max_length=512, overlap=64, tokenize_fn=None): def count_units(chunk): return len(tokenize_fn(chunk)) if tokenize_fn else len(chunk) chunks = [text] if count_units(text) <= max_length: return chunks for sep in seps: new_chunks = [] for chunk in chunks: split_chunks = [sub_chunk.strip() for sub_chunk in chunk.split(sep)] packed_chunk = "" for split_chunk in split_chunks: if packed_chunk and count_units(packed_chunk + sep + split_chunk) <= (max_length - overlap): packed_chunk += sep + split_chunk else: if packed_chunk: new_chunks.append(packed_chunk) packed_chunk = split_chunk if packed_chunk: new_chunks.append(packed_chunk) # Retain the separator at the end of each sub-chunk for context chunks = [x + sep.strip() if sep.strip() and x != new_chunks[-1] else x for x in new_chunks] chunks = new_chunks if all(count_units(chunk) <= (max_length - overlap) for chunk in chunks): break final_chunks = [] previous_end = "" for i in range(len(chunks)): current_chunk = chunks[i] if previous_end: # Calculate the overlap based on tokens or characters half_overlap_length = min(overlap, int(count_units(previous_end) / 2), int(count_units(current_chunk) / 2)) # Ensure we do not split words in the overlap words = previous_end.split() overlap_text = "" overlap_count = 0 for word in reversed(words): overlap_count += count_units(word + " ") if overlap_count > half_overlap_length: break overlap_text = word + " " + overlap_text # Add the overlap text to the current chunk combined_chunk = (overlap_text + current_chunk).strip() if count_units(combined_chunk) > max_length: final_chunks.append(current_chunk) else: final_chunks.append(combined_chunk) else: final_chunks.append(current_chunk) # First chunk, no overlap previous_end = current_chunk return final_chunks def initialize_worker(): global model, tokenizer model = ct.models.CompiledMLModel('./msmarco_distilbert_base_tas_b_512_single_quantized.mlmodelc') tokenizer = AutoTokenizer.from_pretrained("sentence-transformers/msmarco-distilbert-base-tas-b") def batch_embed(batch, db_name): conn = sqlite3.connect(db_name) placeholders = ', '.join(['?'] * len(batch)) rows = conn.execute(f"SELECT * FROM article_sections WHERE id IN ({placeholders})", batch).fetchall() conn.close() print(f"🚜 starting embedding batch from {rows[0][0]} to {rows[-1][0]}...") keys = [] vectors = [] for row in rows: (section_id, article_id, url, title, seq_id, section, text) = row chunk_header = build_section_header(section, title) chunk_header_offset = len(tokenize_for_chunking(chunk_header)) max_chunk_length = 512 - chunk_header_offset chunks = lazypack_chunk4(text, max_length=max_chunk_length, tokenize_fn=tokenize_for_chunking) for chunk in chunks: chunk_embedding = embed(chunk_header + chunk) keys.append(section_id) vectors.append(chunk_embedding) print(f"🚜 finished embedding batch from {rows[0][0]} to {rows[-1][0]}.") return keys, np.array(vectors) def index_batches_parallel(db_name, index_name, precision, batch_size=2000, num_workers=3): conn = sqlite3.connect(db_name) total_sections = conn.execute("SELECT COUNT(1) FROM article_sections").fetchone()[0] conn.close() print(f"🔮 Beginning embedding {total_sections} sections...") batches = [(list(range(i, min(i + batch_size, total_sections))), db_name) for i in range(0, total_sections, batch_size)] with Pool(num_workers, initializer=initialize_worker) as pool: results = pool.starmap(batch_embed, batches) batch_count = len(results) print(f"🔮 Beginning indexing {total_sections} in {batch_count} batches...") allowed_precision = ['f16', 'f32'] # NOTE: do not allow i8; known issues (accuracy, performance), esp w inner product metric index_precision = precision if precision in allowed_precision else 'f32' index = Index(ndim=768, connectivity=16, metric="ip", multi=True, dtype=index_precision) for keys, vectors in results: index.add(keys=keys, vectors=vectors) index.save(index_name) index_size = len(index) print(f"🔮 Indexing complete with {index_size} records; saved to disk at `{index_name}`.") def save_wiki_dump(lang, date): db_name = f"wikipedia_{lang}_{date}.db" db_exists = os.path.exists(db_name) if db_exists: print(f"📦 Found existing database `{db_name}`. Skipping download & clean.") else: print(f"☁️ Loading Wikipedia articles in {lang} from {date}...") dump_filepath = download_wiki_dump(lang, date) print(f"🔍 Downloaded dump file. Cleaning... {dump_filepath}") articles = process_wiki_dump(dump_filepath, lang) n_articles = articles.__sizeof__() if n_articles == 0: print("💩 No articles found!") print(f" - the data> {articles}") exit(1) print(f"📦 Found {n_articles} articles! Importing into sqlite `{db_name}`, embedding and indexing...") conn = sqlite3.connect(db_name) cursor = conn.cursor() cursor.execute(""" CREATE TABLE IF NOT EXISTS article_sections ( id INTEGER PRIMARY KEY AUTOINCREMENT, article_id INTEGER, url TEXT, title TEXT, sequence_id INTEGER, section_name TEXT, text TEXT ); """) batch_size = 1000 batch = [] total_articles = 0 total_sections = 0 for article in articles: article_id = article["article_id"] url = article["url"] title = article["title"] for seq_id, (section, text) in enumerate(article["sections"]): batch.append((article_id, url, title, seq_id, section, text)) total_sections += 1 total_articles += 1 if len(batch) >= batch_size: print(f"⚙️ Processing articles up to {total_articles}...") cursor.executemany(""" INSERT OR REPLACE INTO article_sections (article_id, url, title, sequence_id, section_name, text) VALUES (?, ?, ?, ?, ?, ?); """, batch) conn.commit() print(f"⚙️ Processed {total_articles} articles with {total_sections} sections...") batch = [] if batch: print(f"⚙️ Processing articles up to {total_articles}...") cursor.executemany(""" INSERT OR REPLACE INTO article_sections (article_id, url, title, sequence_id, section_name, text) VALUES (?, ?, ?, ?, ?, ?); """, batch) conn.commit() conn.execute("VACUUM;") count = conn.execute("SELECT COUNT(1) FROM article_sections;").fetchone()[0] conn.close() print(f"🌎 Initial processing complete! Total sections in database: {count}")#, Index Size: {index_size}") # end clean & save wikidump index_precision = "f16" index_path = f"./{lang}wiki-{date}.{index_precision}.index" index_batches_parallel(db_name, index_path, index_precision) index = Index.restore(index_path, view=True) conn = sqlite3.connect(db_name) cursor = conn.cursor() query = "What is the capital of AUS?" print(f"🔎 testing search... '{query}'") qembed = embed(query) res: Matches = index.search(qembed, 5) print(f" - Results:") for result in res: (title, section, text) = cursor.execute("SELECT title, section_name, text FROM article_sections WHERE id = ?;", (f"{result.key}",)).fetchone() snippet = text[:280].replace("\n", " ") print(f" - Key: {result.key} | Distance: {result.distance} | Excerpt from '{title}', '{section}': {snippet}") conn.close() if __name__ == "__main__": model = ct.models.CompiledMLModel('./msmarco_distilbert_base_tas_b_512_single_quantized.mlmodelc') tokenizer = AutoTokenizer.from_pretrained("sentence-transformers/msmarco-distilbert-base-tas-b") lang = "simple" date = "20240720" save_wiki_dump(lang, date)