bwittmann commited on
Commit
f43ae37
β€’
1 Parent(s): f06c822

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +68 -0
README.md ADDED
@@ -0,0 +1,68 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ task_categories:
3
+ - image-segmentation
4
+ language:
5
+ - en
6
+ tags:
7
+ - medical
8
+ - blood-vessel
9
+ - octa
10
+ pretty_name: (Simulation-Based Segmentation of Blood Vessels in Cerebral 3D OCTA Images
11
+ size_categories:
12
+ - 1K<n<10K
13
+ ---
14
+
15
+ # syn-cerebral-octa-seg
16
+ <div style="text-align: center;">
17
+ <img src="docs/synthetic3d.jpg" style="width: 70%; height: auto;">
18
+ </div>
19
+
20
+ ## Introduction
21
+
22
+ To accurately segment blood vessels in cerebral 3D Optical Coherence Tomography Angiography (OCTA) images, a vast amount of voxel-level annotations are required. However, the curation of manual annotations is a cumbersome and time-consuming task. To alleviate the need for manual annotation, we provide realistic synthetic data generated via our proposed synthesis pipeline.
23
+
24
+ Our proposed synthesis pipeline is described in detail in our manuscript ([Simulation-Based Segmentation of Blood Vessels in Cerebral 3D OCTA Images](https://arxiv.org/abs/2403.07116)). Corresponding code and additional information can be found on [GitHub](https://github.com/bwittmann/syn-cerebral-octa-seg).
25
+
26
+ **TL;DR:** *First*, we selectively extract patches from vessel graphs that match the FOV and morphological characteristics of vasculature contained in cerebral OCTA images and transform them into voxelized volumes; *second*, we transform the voxelized volumes into synthetic cerebral 3D OCTA images by simulating the most dominant image acquisition artifacts; and *third*, we use our synthetic cerebral 3D OCTA images paired with their matching ground truth labels to train a blood vessel segmentation network.
27
+
28
+ ## Dataset Summary
29
+ The voxel size of all provided images is isotropic and corresponds to 2 ΞΌm.
30
+
31
+ - [1,137 synthetic cerebral 3D OCTA images with metadata & matching ground truth labels of shape 250 x 250 x 250.](https://huggingface.co/datasets/bwittmann/syn-cerebral-octa-seg/tree/main/synthetic_cerebral_octa)
32
+ ```
33
+ synthetic_cerebral_octa/
34
+ └── axxxx_0/
35
+ └── sim/
36
+ └── sim_data_xx.npy # synthetic cerebral 3D OCTA image
37
+ └── sim_seg_xx.npy # ground truth
38
+ └── ang.npy # metadata angle
39
+ └── occ.npy # metadata occupancy below
40
+ └── rad.npy # metadata radius
41
+ └── seg.npy # voxelized volume
42
+ └── axxxx_1/
43
+ ...
44
+ ```
45
+
46
+
47
+ - [6 manually annotated OCTA volumes of shape shape 160 x 160 x 160.](https://huggingface.co/datasets/bwittmann/syn-cerebral-octa-seg/tree/main/manual_annotations)
48
+ ```
49
+ manual_annotations/
50
+ └── mx_0.nii # real cerebral 3D OCTA image
51
+ └── mx_0_label.nii # ground truth (manual annotations)
52
+ ...
53
+ ```
54
+
55
+
56
+ ## Citation
57
+
58
+ If you find our data useful for your research, please consider citing:
59
+ ```bibtex
60
+ @misc{wittmann2024simulationbased,
61
+ title={Simulation-Based Segmentation of Blood Vessels in Cerebral 3D OCTA Images},
62
+ author={Bastian Wittmann and Lukas Glandorf and Johannes C. Paetzold and Tamaz Amiranashvili and Thomas WΓ€lchli and Daniel Razansky and Bjoern Menze},
63
+ year={2024},
64
+ eprint={2403.07116},
65
+ archivePrefix={arXiv},
66
+ primaryClass={eess.IV}
67
+ }
68
+ ```