File size: 9,341 Bytes
d12622d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
import os
import glob
import datasets
import pandas as pd
from sklearn.model_selection import train_test_split

_DESCRIPTION = """\
This new dataset is designed to solve this great NLP task and is crafted with a lot of care.
"""

_CITATION = """\
"""
_CHANNEL_CONFIGS = sorted([
    "CHANNEL0", "CHANNEL1", "CHANNEL2"
])

_GENDER_CONFIGS = sorted(["F", "M"])

_RACE_CONFIGS = sorted(["CHINESE", "MALAY", "INDIAN", "OTHERS"])

_HOMEPAGE = "https://huggingface.co/indonesian-nlp/librivox-indonesia"

_LICENSE = "https://creativecommons.org/publicdomain/zero/1.0/"

_PATH_TO_DATA = r'C:\Users\calic\Downloads\huggingface-dataset\imda-dataset\IMDA - National Speech Corpus\PART1'
# _PATH_TO_DATA = './PART1/DATA'

class Minds14Config(datasets.BuilderConfig):
    """BuilderConfig for xtreme-s"""

    def __init__(
        self, channel, gender, race, description, homepage, path_to_data
    ):
        super(Minds14Config, self).__init__(
            name=channel+gender+race,
            version=datasets.Version("1.0.0", ""),
            description=self.description,
        )
        self.channel = channel
        self.gender = gender
        self.race = race
        self.description = description
        self.homepage = homepage
        self.path_to_data = path_to_data


def _build_config(channel, gender, race):
    return Minds14Config(
        channel=channel,
        gender=gender,
        race=race,
        description=_DESCRIPTION,
        homepage=_HOMEPAGE,
        path_to_data=_PATH_TO_DATA,
    )

# TODO: Name of the dataset usually matches the script name with CamelCase instead of snake_case
class NewDataset(datasets.GeneratorBasedBuilder):
    """TODO: Short description of my dataset."""

    VERSION = datasets.Version("1.1.0")

    # This is an example of a dataset with multiple configurations.
    # If you don't want/need to define several sub-sets in your dataset,
    # just remove the BUILDER_CONFIG_CLASS and the BUILDER_CONFIGS attributes.

    # If you need to make complex sub-parts in the datasets with configurable options
    # You can create your own builder configuration class to store attribute, inheriting from datasets.BuilderConfig
    # BUILDER_CONFIG_CLASS = MyBuilderConfig

    # You will be able to load one or the other configurations in the following list with
    # data = datasets.load_dataset('my_dataset', 'first_domain')
    # data = datasets.load_dataset('my_dataset', 'second_domain')
    BUILDER_CONFIGS = []
    for channel in _CHANNEL_CONFIGS + ["all"]:
        for gender in _GENDER_CONFIGS + ["all"]:
            for race in _RACE_CONFIGS + ["all"]:
                BUILDER_CONFIGS.append(_build_config(channel, gender, race))
    # BUILDER_CONFIGS = [_build_config(name) for name in _CHANNEL_CONFIGS + ["all"]]

    DEFAULT_CONFIG_NAME = "allallall"  # It's not mandatory to have a default configuration. Just use one if it make sense.

    def _info(self):
        # TODO: This method specifies the datasets.DatasetInfo object which contains informations and typings for the dataset
        task_templates = None
        # mics = _CHANNEL_CONFIGS
        features = datasets.Features(
            {
                "audio": datasets.features.Audio(sampling_rate=16000),
                "transcript": datasets.Value("string"),
                "mic": datasets.Value("string"),
                "audio_name": datasets.Value("string"),
                "gender": datasets.Value("string"),
                "race": datasets.Value("string"),
            }
        )
        
        return datasets.DatasetInfo(
            # This is the description that will appear on the datasets page.
            description=_DESCRIPTION,
            # This defines the different columns of the dataset and their types
            features=features,  # Here we define them above because they are different between the two configurations
            # If there's a common (input, target) tuple from the features, uncomment supervised_keys line below and
            # specify them. They'll be used if as_supervised=True in builder.as_dataset.
            supervised_keys=("audio", "transcript"),
            # Homepage of the dataset for documentation
            homepage=_HOMEPAGE,
            # License for the dataset if available
            license=_LICENSE,
            # Citation for the dataset
            citation=_CITATION,
            task_templates=task_templates,
        )

    def _split_generators(self, dl_manager):
        # TODO: This method is tasked with downloading/extracting the data and defining the splits depending on the configuration
        # If several configurations are possible (listed in BUILDER_CONFIGS), the configuration selected by the user is in self.config.name
        mics = (
            _CHANNEL_CONFIGS
            if self.config.channel == "all"
            else [self.config.channel]
        )

        gender = (
            _GENDER_CONFIGS
            if self.config.gender == "all"
            else [self.config.gender]
        )

        race = (
            _RACE_CONFIGS
            if self.config.race == "all"
            else [self.config.race]
        )

        # augment speaker ids directly here
        # read the speaker information
        train_speaker_ids = []
        test_speaker_ids = []
        path_to_speaker = os.path.join(self.config.path_to_data, "DOC", "Speaker Information (Part 1).XLSX")
        speaker_df = pd.read_excel(path_to_speaker, dtype={'SCD/PART1': object})
        for g in gender:
            for r in race:
                X = speaker_df[(speaker_df["ACC"]==r) & (speaker_df["SEX"]==g)]
                X_train, X_test = train_test_split(X, test_size=0.3, random_state=42, shuffle=True)
                train_speaker_ids.extend(X_train["SCD/PART1"])
                test_speaker_ids.extend(X_test["SCD/PART1"])

        # dl_manager is a datasets.download.DownloadManager that can be used to download and extract URLS
        # It can accept any type or nested list/dict and will give back the same structure with the url replaced with path to local files.
        # By default the archives will be extracted and a path to a cached folder where they are extracted is returned instead of the archive
        return [
            datasets.SplitGenerator(
            name=datasets.Split.TRAIN,
            gen_kwargs={
                "path_to_data": self.config.path_to_data,
                "speaker_metadata":speaker_df,
                # "speaker_ids": train_speaker_ids,
                "speaker_ids":["0001"],
                "mics": mics,
                "dl_manager": dl_manager
              },
          ),
          datasets.SplitGenerator(
            name=datasets.Split.TEST,
            gen_kwargs={
                "path_to_data": self.config.path_to_data,
                "speaker_metadata":speaker_df,
                # "speaker_ids": test_speaker_ids,
                "speaker_ids": ["0003"],
                "mics": mics,
                "dl_manager": dl_manager
            },
        ),
        ]

    # method parameters are unpacked from `gen_kwargs` as given in `_split_generators`
    def _generate_examples(
            self,
            path_to_data,
            speaker_metadata,
            speaker_ids,
            mics,
            dl_manager
        ):
        id_ = 0
        for mic in mics:
            for speaker in speaker_ids:
                # TRANSCRIPT: in the case of error, if no file found then dictionary will b empty
                metadata_path = os.path.join(path_to_data, "DATA", mic, "SCRIPT", mic[-1]+speaker+'*.TXT')
                script_list = glob.glob(metadata_path)
                d = {}
                for script in script_list:
                    line_num = 0
                    with open(script, encoding='utf-8-sig') as f:
                        for line in f:
                            if line_num == 0:
                                key = line.split("\t")[0]
                                line_num += 1
                            elif line_num == 1:
                                d[key] = line.strip()
                                line_num -= 1
                # AUDIO: in the case of error it will skip the speaker
                archive_path = os.path.join(path_to_data, "DATA", mic, "WAVE", "SPEAKER"+speaker+'.zip')
                # check that archive path exists, else will not open the archive
                if os.path.exists(archive_path):
                    audio_files = dl_manager.iter_archive(archive_path)
                    for path, f in audio_files:
                        # bug catching if any error?
                        result = {}
                        full_path = os.path.join(archive_path, path) if archive_path else path # bug catching here
                        result["audio"] = {"path": full_path, "bytes": f.read()}
                        result["transcript"] = d[f.name[-13:-4]]
                        result["audio_name"] = path
                        result["mic"] = mic
                        metadata_row = speaker_metadata.loc[speaker_metadata["SCD/PART1"]==speaker].iloc[0]
                        result["gender"]=metadata_row["SEX"]
                        result["race"]=metadata_row["ACC"]
                        yield id_, result
                        id_ += 1