imda-dataset / imda-dataset-p1.py
calicxy's picture
updating loading script
6928828
import os
import glob
import datasets
import pandas as pd
from sklearn.model_selection import train_test_split
_DESCRIPTION = """\
Part 1 of the National Speech Corpus. The National Speech Corpus (NSC)
is the first large-scale Singapore English corpus spearheaded by the
Info-communications and Media Development Authority (IMDA) of Singapore.
"""
_CITATION = """\
"""
_CHANNEL_CONFIGS = sorted([
"CHANNEL0", "CHANNEL1", "CHANNEL2"
])
_GENDER_CONFIGS = sorted(["F", "M"])
_RACE_CONFIGS = sorted(["CHINESE", "MALAY", "INDIAN", "OTHERS"])
_HOMEPAGE = "https://huggingface.co/indonesian-nlp/librivox-indonesia"
_LICENSE = "https://creativecommons.org/publicdomain/zero/1.0/"
_PATH_TO_DATA = './IMDA - National Speech Corpus/PART1'
# _PATH_TO_DATA = './PART1/DATA'
class Minds14Config(datasets.BuilderConfig):
"""BuilderConfig for xtreme-s"""
def __init__(
self, channel, gender, race, description, homepage, path_to_data
):
super(Minds14Config, self).__init__(
name=channel+gender+race,
version=datasets.Version("1.0.0", ""),
description=self.description,
)
self.channel = channel
self.gender = gender
self.race = race
self.description = description
self.homepage = homepage
self.path_to_data = path_to_data
def _build_config(channel, gender, race):
return Minds14Config(
channel=channel,
gender=gender,
race=race,
description=_DESCRIPTION,
homepage=_HOMEPAGE,
path_to_data=_PATH_TO_DATA,
)
# TODO: Name of the dataset usually matches the script name with CamelCase instead of snake_case
class NewDataset(datasets.GeneratorBasedBuilder):
"""TODO: Short description of my dataset."""
VERSION = datasets.Version("1.1.0")
# This is an example of a dataset with multiple configurations.
# If you don't want/need to define several sub-sets in your dataset,
# just remove the BUILDER_CONFIG_CLASS and the BUILDER_CONFIGS attributes.
# If you need to make complex sub-parts in the datasets with configurable options
# You can create your own builder configuration class to store attribute, inheriting from datasets.BuilderConfig
# BUILDER_CONFIG_CLASS = MyBuilderConfig
# You will be able to load one or the other configurations in the following list with
# data = datasets.load_dataset('my_dataset', 'first_domain')
# data = datasets.load_dataset('my_dataset', 'second_domain')
BUILDER_CONFIGS = []
for channel in _CHANNEL_CONFIGS + ["all"]:
for gender in _GENDER_CONFIGS + ["all"]:
for race in _RACE_CONFIGS + ["all"]:
BUILDER_CONFIGS.append(_build_config(channel, gender, race))
# BUILDER_CONFIGS = [_build_config(name) for name in _CHANNEL_CONFIGS + ["all"]]
DEFAULT_CONFIG_NAME = "allallall" # It's not mandatory to have a default configuration. Just use one if it make sense.
def _info(self):
# TODO: This method specifies the datasets.DatasetInfo object which contains informations and typings for the dataset
task_templates = None
# mics = _CHANNEL_CONFIGS
features = datasets.Features(
{
"audio": datasets.features.Audio(sampling_rate=16000),
"transcript": datasets.Value("string"),
"mic": datasets.Value("string"),
"audio_name": datasets.Value("string"),
"gender": datasets.Value("string"),
"race": datasets.Value("string"),
}
)
return datasets.DatasetInfo(
# This is the description that will appear on the datasets page.
description=_DESCRIPTION,
# This defines the different columns of the dataset and their types
features=features, # Here we define them above because they are different between the two configurations
# If there's a common (input, target) tuple from the features, uncomment supervised_keys line below and
# specify them. They'll be used if as_supervised=True in builder.as_dataset.
supervised_keys=("audio", "transcript"),
# Homepage of the dataset for documentation
homepage=_HOMEPAGE,
# License for the dataset if available
license=_LICENSE,
# Citation for the dataset
citation=_CITATION,
task_templates=task_templates,
)
def _split_generators(self, dl_manager):
# TODO: This method is tasked with downloading/extracting the data and defining the splits depending on the configuration
# If several configurations are possible (listed in BUILDER_CONFIGS), the configuration selected by the user is in self.config.name
mics = (
_CHANNEL_CONFIGS
if self.config.channel == "all"
else [self.config.channel]
)
gender = (
_GENDER_CONFIGS
if self.config.gender == "all"
else [self.config.gender]
)
race = (
_RACE_CONFIGS
if self.config.race == "all"
else [self.config.race]
)
# augment speaker ids directly here
# read the speaker information
train_speaker_ids = []
test_speaker_ids = []
# path_to_speaker = os.path.join(self.config.path_to_data, "DOC", "Speaker Information (Part 1).XLSX")
path_to_speaker = dl_manager.download(os.path.join(self.config.path_to_data, "DOC", "Speaker Information (Part 1).XLSX"))
speaker_df = pd.read_excel(path_to_speaker, dtype={'SCD/PART1': object})
for g in gender:
for r in race:
X = speaker_df[(speaker_df["ACC"]==r) & (speaker_df["SEX"]==g)]
X_train, X_test = train_test_split(X, test_size=0.3, random_state=42, shuffle=True)
train_speaker_ids.extend(X_train["SCD/PART1"])
test_speaker_ids.extend(X_test["SCD/PART1"])
# dl_manager is a datasets.download.DownloadManager that can be used to download and extract URLS
# It can accept any type or nested list/dict and will give back the same structure with the url replaced with path to local files.
# By default the archives will be extracted and a path to a cached folder where they are extracted is returned instead of the archive
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={
"path_to_data": self.config.path_to_data,
"speaker_metadata":speaker_df,
# "speaker_ids": train_speaker_ids,
"speaker_ids":["0001"],
"mics": mics,
"dl_manager": dl_manager
},
),
datasets.SplitGenerator(
name=datasets.Split.TEST,
gen_kwargs={
"path_to_data": self.config.path_to_data,
"speaker_metadata":speaker_df,
# "speaker_ids": test_speaker_ids,
"speaker_ids": ["0003"],
"mics": mics,
"dl_manager": dl_manager
},
),
]
# method parameters are unpacked from `gen_kwargs` as given in `_split_generators`
def _generate_examples(
self,
path_to_data,
speaker_metadata,
speaker_ids,
mics,
dl_manager
):
id_ = 0
for mic in mics:
for speaker in speaker_ids:
# TRANSCRIPT: in the case of error, if no file found then dictionary will b empty
d = {}
counter = 0
while counter < 10:
data = dl_manager.download(os.path.join(path_to_data, "DATA", mic, "SCRIPT", mic[-1]+speaker+str(counter)+'.TXT'))
try:
line_num = 0
with open(data, encoding='utf-8-sig') as f:
for line in f:
if line_num == 0:
key = line.split("\t")[0]
line_num += 1
elif line_num == 1:
d[key] = line.strip()
line_num -= 1
except:
print(f"{counter}")
break
counter+=1
# AUDIO: in the case of error it will skip the speaker
# archive_path = os.path.join(path_to_data, "DATA", mic, "WAVE", "SPEAKER"+speaker+'.zip')
archive_path = dl_manager.download(os.path.join(path_to_data, "DATA", mic, "WAVE", "SPEAKER"+speaker+'.zip'))
# check that archive path exists, else will not open the archive
if os.path.exists(archive_path):
audio_files = dl_manager.iter_archive(archive_path)
for path, f in audio_files:
# bug catching if any error?
result = {}
full_path = os.path.join(archive_path, path) if archive_path else path # bug catching here
result["audio"] = {"path": full_path, "bytes": f.read()}
result["audio_name"] = path
result["mic"] = mic
metadata_row = speaker_metadata.loc[speaker_metadata["SCD/PART1"]==speaker].iloc[0]
result["gender"]=metadata_row["SEX"]
result["race"]=metadata_row["ACC"]
try:
result["transcript"] = d[f.name[-13:-4]]
yield id_, result
id_ += 1
except:
print(f"unable to find transcript")